|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for seq2seq, text to image. |
|
Script adapted from run_summarization_flax.py |
|
""" |
|
|
|
|
|
import os |
|
|
|
os.environ['HF_HOME'] = '/data/huggingface/' |
|
os.environ['WANDB_CACHE_DIR'] = '/data/wandb/' |
|
|
|
import logging as pylogging |
|
import sys |
|
import time |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import Callable, Optional |
|
import json |
|
|
|
import datasets |
|
import nltk |
|
import numpy as np |
|
from datasets import Dataset, load_dataset, load_metric |
|
from tqdm import tqdm |
|
|
|
import jax |
|
import jax.numpy as jnp |
|
import optax |
|
import transformers |
|
from filelock import FileLock |
|
from flax import jax_utils, traverse_util |
|
from flax.serialization import from_bytes, to_bytes |
|
import flax.linen as nn |
|
from flax.jax_utils import unreplicate |
|
from flax.training import train_state |
|
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key |
|
from transformers import ( |
|
CONFIG_MAPPING, |
|
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, |
|
AutoConfig, |
|
AutoTokenizer, |
|
FlaxAutoModelForSeq2SeqLM, |
|
FlaxBartForConditionalGeneration, |
|
HfArgumentParser, |
|
TrainingArguments, |
|
) |
|
from transformers.models.bart.modeling_flax_bart import * |
|
from transformers.file_utils import is_offline_mode |
|
|
|
import wandb |
|
|
|
logger = pylogging.getLogger(__name__) |
|
|
|
try: |
|
nltk.data.find("tokenizers/punkt") |
|
except (LookupError, OSError): |
|
if is_offline_mode(): |
|
raise LookupError( |
|
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" |
|
) |
|
with FileLock(".lock") as lock: |
|
nltk.download("punkt", quiet=True) |
|
|
|
|
|
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys()) |
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
|
|
|
|
|
|
|
|
|
OUTPUT_VOCAB_SIZE = 16384 + 1 |
|
OUTPUT_LENGTH = 256 + 1 |
|
BOS_TOKEN_ID = 16384 |
|
BASE_MODEL = 'facebook/bart-large-cnn' |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: Optional[str] = field( |
|
default=BASE_MODEL, |
|
metadata={ |
|
"help": "The model checkpoint for weights initialization." |
|
"Don't set if you want to train a model from scratch." |
|
}, |
|
) |
|
model_type: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." |
|
}, |
|
) |
|
from_checkpoint: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Loads a pretrained wandb checkpoint. Use artifact reference." |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
text_column: Optional[str] = field( |
|
default='caption', |
|
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, |
|
) |
|
encoding_column: Optional[str] = field( |
|
default='encoding', |
|
metadata={"help": "The name of the column in the datasets containing the image encodings."}, |
|
) |
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, |
|
) |
|
test_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input predict data file to do prediction on (a text file)."}, |
|
) |
|
max_source_length: Optional[int] = field( |
|
default=128, |
|
metadata={ |
|
"help": "The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
}, |
|
) |
|
no_decay: bool = field( |
|
default=False, metadata={"help": "Whether to use decay in the learning rate scheduler."} |
|
) |
|
max_target_length: Optional[int] = field( |
|
default=OUTPUT_LENGTH, |
|
metadata={ |
|
"help": "The maximum total sequence length for target text after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
}, |
|
) |
|
val_max_target_length: Optional[int] = field( |
|
default=OUTPUT_LENGTH, |
|
metadata={ |
|
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." |
|
"This argument is also used to override the `max_length` param of `model.generate`, which is used " |
|
"during evaluation." |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_predict_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this " |
|
"value if set." |
|
}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=80, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
source_prefix: Optional[str] = field( |
|
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} |
|
) |
|
predict_with_generate: bool = field( |
|
default=False, metadata={"help": "Whether to use generate to calculate generative metrics."} |
|
) |
|
num_beams: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`, " |
|
"which is used during evaluation." |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
log_interval: Optional[int] = field( |
|
default=40, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
}, |
|
) |
|
log_model: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
save_model_steps: Optional[int] = field( |
|
default=3000, |
|
metadata={ |
|
"help": "For logging the model more frequently. Used only when `log_model` is set." |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["tsv", "csv", "json"], "`train_file` should be a tsv, csv or json file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension in ["tsv", "csv", "json"], "`validation_file` should be a tsv, csv or json file." |
|
if self.val_max_target_length is None: |
|
self.val_max_target_length = self.max_target_length |
|
|
|
|
|
class TrainState(train_state.TrainState): |
|
dropout_rng: jnp.ndarray |
|
grad_accum: jnp.ndarray |
|
optimizer_step: int |
|
|
|
def replicate(self): |
|
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) |
|
|
|
|
|
class CustomFlaxBartModule(FlaxBartModule): |
|
def setup(self): |
|
|
|
self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE) |
|
self.config.max_position_embeddings_decoder = getattr(self.config, 'max_position_embeddings_decoder', OUTPUT_LENGTH) |
|
|
|
|
|
self.shared = nn.Embed( |
|
self.config.vocab_size, |
|
self.config.d_model, |
|
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype), |
|
dtype=self.dtype, |
|
) |
|
|
|
self.decoder_embed = nn.Embed( |
|
self.config.vocab_size_output, |
|
self.config.d_model, |
|
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype), |
|
dtype=self.dtype, |
|
) |
|
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) |
|
|
|
|
|
decoder_config = BartConfig(self.config.to_dict()) |
|
decoder_config.max_position_embeddings = self.config.max_position_embeddings_decoder |
|
decoder_config.vocab_size = self.config.vocab_size_output |
|
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed) |
|
|
|
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): |
|
def setup(self): |
|
|
|
self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE) |
|
|
|
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype) |
|
self.lm_head = nn.Dense( |
|
self.config.vocab_size_output, |
|
use_bias=False, |
|
dtype=self.dtype, |
|
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype), |
|
) |
|
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.config.vocab_size_output)) |
|
|
|
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration): |
|
module_class = CustomFlaxBartForConditionalGenerationModule |
|
|
|
|
|
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False): |
|
""" |
|
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. |
|
Shuffle batches if `shuffle` is `True`. |
|
""" |
|
steps_per_epoch = len(dataset) // batch_size |
|
|
|
if shuffle: |
|
batch_idx = jax.random.permutation(rng, len(dataset)) |
|
else: |
|
batch_idx = jnp.arange(len(dataset)) |
|
|
|
batch_idx = batch_idx[: steps_per_epoch * batch_size] |
|
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) |
|
|
|
for idx in batch_idx: |
|
batch = dataset[idx] |
|
batch = {k: jnp.array(v) for k, v in batch.items()} |
|
|
|
batch = shard(batch) |
|
|
|
yield batch |
|
|
|
|
|
def create_learning_rate_fn( |
|
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float, no_decay: bool |
|
) -> Callable[[int], jnp.array]: |
|
"""Returns a linear warmup, linear_decay learning rate function.""" |
|
steps_per_epoch = train_ds_size // train_batch_size |
|
num_train_steps = steps_per_epoch * num_train_epochs |
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) |
|
if no_decay: |
|
return warmup_fn |
|
decay_fn = optax.linear_schedule( |
|
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps |
|
) |
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) |
|
return schedule_fn |
|
|
|
|
|
def wandb_log(metrics, step=None, prefix=None): |
|
if jax.process_index() == 0: |
|
log_metrics = {f'{prefix}/{k}' if prefix is not None else k: jax.device_get(v) for k,v in metrics.items()} |
|
if step is not None: |
|
log_metrics['train/step'] = step |
|
wandb.log(log_metrics) |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
if ( |
|
os.path.exists(training_args.output_dir) |
|
and os.listdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty." |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
|
|
|
|
wandb.init( |
|
entity='wandb', |
|
project='hf-flax-dalle-mini', |
|
job_type='Seq2SeqVQGAN', |
|
config=parser.parse_args() |
|
) |
|
|
|
|
|
wandb.define_metric('train/step') |
|
wandb.define_metric('*', step_metric='train/step') |
|
|
|
|
|
pylogging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=pylogging.INFO, |
|
) |
|
|
|
logger.setLevel(pylogging.INFO if jax.process_index() == 0 else pylogging.ERROR) |
|
if jax.process_index() == 0: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
|
|
|
|
|
|
data_files = {} |
|
if data_args.train_file is not None: |
|
data_files["train"] = data_args.train_file |
|
if data_args.validation_file is not None: |
|
data_files["validation"] = data_args.validation_file |
|
if data_args.test_file is not None: |
|
data_files["test"] = data_args.test_file |
|
dataset = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir, delimiter="\t") |
|
|
|
|
|
|
|
|
|
tokenizer = None |
|
artifact_dir = None |
|
|
|
def restore_state(state, artifact_dir): |
|
|
|
if (Path(artifact_dir) / 'opt_state.msgpack').exists(): |
|
with (Path(artifact_dir) / 'opt_state.msgpack').open('rb') as f: |
|
opt_state = from_bytes(state.opt_state, f.read()) |
|
|
|
|
|
if (Path(artifact_dir) / 'training_state.json').exists(): |
|
with (Path(artifact_dir) / 'training_state.json').open('r') as f: |
|
training_state = json.load(f) |
|
step = training_state['step'] |
|
optimizer_step = step // training_args.gradient_accumulation_steps |
|
state.replace(step=step, optimizer_step=optimizer_step) |
|
|
|
if model_args.from_checkpoint is not None: |
|
artifact = wandb.run.use_artifact(model_args.from_checkpoint) |
|
artifact_dir = artifact.download() |
|
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir) |
|
|
|
|
|
|
|
model.config.force_bos_token_to_be_generated = False |
|
model.config.forced_bos_token_id = None |
|
model.config.forced_eos_token_id = None |
|
|
|
|
|
config = model.config |
|
|
|
|
|
if (Path(artifact_dir) / 'tokenizer_config.json').exists(): |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer |
|
) |
|
|
|
else: |
|
base_model = FlaxAutoModelForSeq2SeqLM.from_pretrained( |
|
model_args.model_name_or_path, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) |
|
) |
|
|
|
config = BartConfig.from_pretrained(model_args.model_name_or_path) |
|
config.tie_word_embeddings = False |
|
config.decoder_start_token_id = BOS_TOKEN_ID |
|
config.bos_token_id = BOS_TOKEN_ID |
|
config.pos_token_id = BOS_TOKEN_ID |
|
config.eos_token_id = BOS_TOKEN_ID + 1 |
|
config.forced_bos_token_id = None |
|
config.forced_eos_token_id = None |
|
config.force_bos_token_to_be_generated = False |
|
config.min_length = data_args.max_target_length |
|
config.max_length = data_args.max_target_length |
|
|
|
|
|
model = CustomFlaxBartForConditionalGeneration(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)) |
|
|
|
|
|
model.params['model']['encoder'] = base_model.params['model']['encoder'] |
|
model.params['model']['shared'] = base_model.params['model']['shared'] |
|
del base_model |
|
|
|
|
|
if tokenizer is None: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer |
|
) |
|
|
|
print(f"TPUs: {jax.device_count()}") |
|
assert jax.device_count() == 8, "TPUs in use, please check running processes" |
|
|
|
prefix = data_args.source_prefix if data_args.source_prefix is not None else "" |
|
|
|
|
|
|
|
if training_args.do_train: |
|
column_names = dataset["train"].column_names |
|
elif training_args.do_eval: |
|
column_names = dataset["validation"].column_names |
|
elif training_args.do_predict: |
|
column_names = dataset["test"].column_names |
|
else: |
|
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") |
|
return |
|
|
|
|
|
text_column = data_args.text_column |
|
encoding_column = data_args.encoding_column |
|
|
|
|
|
max_target_length = data_args.max_target_length |
|
|
|
def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int): |
|
""" |
|
Shift input ids one token to the right. |
|
""" |
|
shifted_input_ids = np.zeros(input_ids.shape) |
|
shifted_input_ids[:, 1:] = input_ids[:, :-1] |
|
shifted_input_ids[:, 0] = decoder_start_token_id |
|
return shifted_input_ids |
|
|
|
def preprocess_function(examples): |
|
inputs = examples[text_column] |
|
inputs = [prefix + inp for inp in inputs] |
|
|
|
model_inputs = tokenizer( |
|
inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np" |
|
) |
|
|
|
|
|
|
|
|
|
labels = [eval(indices) for indices in examples['encoding']] |
|
labels = np.asarray(labels) |
|
|
|
|
|
model_inputs["labels"] = labels |
|
|
|
|
|
decoder_input_ids = shift_tokens_right(labels, config.decoder_start_token_id) |
|
model_inputs["decoder_input_ids"] = decoder_input_ids |
|
|
|
return model_inputs |
|
|
|
if training_args.do_train: |
|
if "train" not in dataset: |
|
raise ValueError("--do_train requires a train dataset") |
|
train_dataset = dataset["train"] |
|
if data_args.max_train_samples is not None: |
|
train_dataset = train_dataset.select(range(data_args.max_train_samples)) |
|
train_dataset = train_dataset.map( |
|
preprocess_function, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on train dataset", |
|
) |
|
|
|
if training_args.do_eval: |
|
max_target_length = data_args.val_max_target_length |
|
if "validation" not in dataset: |
|
raise ValueError("--do_eval requires a validation dataset") |
|
eval_dataset = dataset["validation"] |
|
if data_args.max_eval_samples is not None: |
|
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) |
|
eval_dataset = eval_dataset.map( |
|
preprocess_function, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on validation dataset", |
|
) |
|
|
|
if training_args.do_predict: |
|
max_target_length = data_args.val_max_target_length |
|
if "test" not in dataset: |
|
raise ValueError("--do_predict requires a test dataset") |
|
predict_dataset = dataset["test"] |
|
if data_args.max_predict_samples is not None: |
|
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) |
|
predict_dataset = predict_dataset.map( |
|
preprocess_function, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on prediction dataset", |
|
) |
|
|
|
|
|
rng = jax.random.PRNGKey(training_args.seed) |
|
rng, dropout_rng = jax.random.split(rng) |
|
|
|
|
|
num_epochs = int(training_args.num_train_epochs) |
|
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() |
|
total_batch_size = int(train_batch_size) * training_args.gradient_accumulation_steps |
|
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() |
|
steps_per_epoch = len(train_dataset) // train_batch_size |
|
total_steps = steps_per_epoch * num_epochs |
|
total_optimization_steps = (len(train_dataset) // total_batch_size) * num_epochs |
|
|
|
|
|
linear_decay_lr_schedule_fn = create_learning_rate_fn( |
|
len(train_dataset), |
|
total_batch_size, |
|
training_args.num_train_epochs, |
|
training_args.warmup_steps, |
|
training_args.learning_rate, |
|
data_args.no_decay |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def decay_mask_fn(params): |
|
flat_params = traverse_util.flatten_dict(params) |
|
layer_norm_params = [ |
|
(name, "scale") for name in ["self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"] |
|
] |
|
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params} |
|
return traverse_util.unflatten_dict(flat_mask) |
|
|
|
|
|
if training_args.adafactor: |
|
|
|
|
|
optimizer = optax.adafactor( |
|
learning_rate=linear_decay_lr_schedule_fn, |
|
) |
|
else: |
|
optimizer = optax.adamw( |
|
learning_rate=linear_decay_lr_schedule_fn, |
|
b1=training_args.adam_beta1, |
|
b2=training_args.adam_beta2, |
|
eps=training_args.adam_epsilon, |
|
weight_decay=training_args.weight_decay, |
|
mask=decay_mask_fn, |
|
) |
|
|
|
|
|
state = TrainState.create( |
|
apply_fn=model.__call__, |
|
params=model.params, |
|
tx=optimizer, |
|
dropout_rng=dropout_rng, |
|
grad_accum=jax.tree_map(jnp.zeros_like, model.params), |
|
optimizer_step=0, |
|
) |
|
if model_args.from_checkpoint is not None: |
|
|
|
restore_state(state, artifact_dir) |
|
|
|
|
|
def loss_fn(logits, labels): |
|
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) |
|
loss = loss.mean() |
|
return loss |
|
|
|
|
|
def train_step(state, batch): |
|
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) |
|
|
|
def compute_loss(params): |
|
labels = batch.pop("labels") |
|
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] |
|
loss = loss_fn(logits, labels) |
|
return loss |
|
|
|
grad_fn = jax.value_and_grad(compute_loss) |
|
loss, grads = grad_fn(state.params) |
|
grad_accum = jax.tree_multimap(lambda x, y: x + y, grads, state.grad_accum) |
|
|
|
def update_fn(): |
|
grads = jax.tree_map(lambda x: x / training_args.gradient_accumulation_steps, grad_accum) |
|
grads = jax.lax.pmean(grads, "batch") |
|
new_state = state.apply_gradients( |
|
grads=grads, grad_accum=jax.tree_map(jnp.zeros_like, grads), optimizer_step=state.optimizer_step + 1 |
|
) |
|
return new_state |
|
|
|
new_state = jax.lax.cond( |
|
(state.step + 1) % training_args.gradient_accumulation_steps == 0, |
|
lambda _: update_fn(), |
|
lambda _: state.replace(grad_accum=grad_accum, step=state.step + 1), |
|
None, |
|
) |
|
|
|
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.optimizer_step)} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
|
|
return new_state.replace(dropout_rng=new_dropout_rng), metrics |
|
|
|
|
|
def eval_step(params, batch): |
|
labels = batch.pop("labels") |
|
logits = model(**batch, params=params, train=False)[0] |
|
loss = loss_fn(logits, labels) |
|
|
|
|
|
metrics = {"loss": loss} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
return metrics |
|
|
|
|
|
max_length = ( |
|
data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length |
|
) |
|
num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} |
|
|
|
def generate_step(params, batch): |
|
model.params = params |
|
output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs) |
|
return output_ids.sequences |
|
|
|
|
|
p_train_step = jax.pmap( |
|
train_step, "batch", donate_argnums=(0,) |
|
) |
|
p_eval_step = jax.pmap(eval_step, "batch") |
|
p_generate_step = jax.pmap(generate_step, "batch") |
|
|
|
|
|
state = state.replicate() |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {num_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") |
|
logger.info( |
|
f" Total train batch size (w. parallel & distributed) = {train_batch_size * training_args.gradient_accumulation_steps}" |
|
) |
|
logger.info(f" Total global steps = {total_steps}") |
|
logger.info(f" Total optimization steps = {total_optimization_steps}") |
|
|
|
train_time = 0 |
|
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) |
|
global_step = 0 |
|
|
|
def run_evaluation(): |
|
|
|
eval_metrics = [] |
|
if training_args.do_eval: |
|
eval_preds = [] |
|
eval_labels = [] |
|
|
|
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size) |
|
eval_steps = len(eval_dataset) // eval_batch_size |
|
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): |
|
|
|
batch = next(eval_loader) |
|
labels = batch["labels"] |
|
|
|
metrics = p_eval_step(state.params, batch) |
|
eval_metrics.append(metrics) |
|
|
|
|
|
if data_args.predict_with_generate: |
|
generated_ids = p_generate_step(state.params, batch) |
|
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) |
|
eval_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1]))) |
|
|
|
|
|
eval_metrics = get_metrics(eval_metrics) |
|
eval_metrics = jax.tree_map(jnp.mean, eval_metrics) |
|
|
|
|
|
wandb_log(eval_metrics, step=global_step, prefix='eval') |
|
|
|
|
|
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})" |
|
epochs.write(desc) |
|
epochs.desc = desc |
|
|
|
return eval_metrics |
|
|
|
def run_save_model(state, step, epoch, eval_metrics=None): |
|
if jax.process_index() == 0: |
|
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) |
|
|
|
|
|
model.save_pretrained( |
|
training_args.output_dir, |
|
params=params, |
|
) |
|
|
|
|
|
tokenizer.save_pretrained(training_args.output_dir) |
|
|
|
|
|
state = unreplicate(state) |
|
with (Path(training_args.output_dir) / 'opt_state.msgpack').open('wb') as f: |
|
f.write(to_bytes(state.opt_state)) |
|
with (Path(training_args.output_dir) / 'training_state.json').open('w') as f: |
|
json.dump({'step': state.step.item()}, f) |
|
|
|
|
|
if data_args.log_model: |
|
metadata = {'step': step, 'epoch': epoch} |
|
if eval_metrics is not None: |
|
metadata['eval/loss'] = eval_metrics['loss'] |
|
artifact = wandb.Artifact( |
|
name=f"model-{wandb.run.id}", type="bart_model", metadata=metadata |
|
) |
|
artifact.add_file(str(Path(training_args.output_dir) / 'flax_model.msgpack')) |
|
artifact.add_file(str(Path(training_args.output_dir) / 'config.json')) |
|
artifact.add_file(str(Path(training_args.output_dir) / 'tokenizer.json')) |
|
artifact.add_file(str(Path(training_args.output_dir) / 'tokenizer_config.json')) |
|
artifact.add_file(str(Path(training_args.output_dir) / 'vocab.json')) |
|
artifact.add_file(str(Path(training_args.output_dir) / 'merges.txt')) |
|
artifact.add_file(str(Path(training_args.output_dir) / 'special_tokens_map.json')) |
|
artifact.add_file(str(Path(training_args.output_dir) / 'opt_state.msgpack')) |
|
artifact.add_file(str(Path(training_args.output_dir) / 'training_state.json')) |
|
wandb.run.log_artifact(artifact) |
|
|
|
|
|
if training_args.push_to_hub: |
|
model.save_pretrained( |
|
training_args.output_dir, |
|
params=params, |
|
push_to_hub=training_args.push_to_hub, |
|
commit_message=f"Saving weights and logs of epoch {epoch+1}", |
|
temp_dir=True |
|
) |
|
|
|
for epoch in epochs: |
|
|
|
train_start = time.time() |
|
|
|
|
|
rng, input_rng = jax.random.split(rng) |
|
|
|
|
|
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True) |
|
steps_per_epoch = len(train_dataset) // train_batch_size |
|
|
|
for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False): |
|
global_step +=1 |
|
batch = next(train_loader) |
|
state, train_metric = p_train_step(state, batch) |
|
|
|
if global_step % data_args.log_interval == 0 and jax.process_index() == 0: |
|
|
|
wandb_log(unreplicate(train_metric), step=global_step, prefix='train') |
|
|
|
if global_step % training_args.eval_steps == 0: |
|
run_evaluation() |
|
|
|
if global_step % data_args.save_model_steps == 0: |
|
run_save_model(state, global_step, epoch) |
|
|
|
|
|
wandb_log(unreplicate(train_metric), step=global_step, prefix='train') |
|
|
|
train_time += time.time() - train_start |
|
train_metric = unreplicate(train_metric) |
|
epochs.write( |
|
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})" |
|
) |
|
|
|
|
|
eval_metrics = run_evaluation() |
|
|
|
|
|
run_save_model(state, global_step, epoch, eval_metrics) |
|
|
|
|
|
|
|
if training_args.do_predict: |
|
logger.info("*** Predict ***") |
|
|
|
pred_metrics = [] |
|
pred_generations = [] |
|
pred_labels = [] |
|
|
|
pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size) |
|
pred_steps = len(predict_dataset) // eval_batch_size |
|
for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False): |
|
|
|
batch = next(pred_loader) |
|
labels = batch["labels"] |
|
|
|
metrics = p_eval_step(state.params, batch) |
|
pred_metrics.append(metrics) |
|
|
|
|
|
if data_args.predict_with_generate: |
|
generated_ids = p_generate_step(state.params, batch) |
|
pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) |
|
pred_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1]))) |
|
|
|
|
|
pred_metrics = get_metrics(pred_metrics) |
|
pred_metrics = jax.tree_map(jnp.mean, pred_metrics) |
|
|
|
|
|
desc = f"Predict Loss: {pred_metrics['loss']})" |
|
logger.info(desc) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|