Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,185 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
import numpy as np
|
4 |
-
import faiss
|
5 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModel
|
6 |
-
from groq import Groq
|
7 |
-
|
8 |
-
# Load API Key from Environment
|
9 |
-
groq_api_key = os.environ.get("GROQ_API_KEY")
|
10 |
-
if groq_api_key is None:
|
11 |
-
st.error("GROQ_API_KEY environment variable not set.")
|
12 |
-
st.stop()
|
13 |
-
|
14 |
-
# Initialize Groq Client
|
15 |
-
try:
|
16 |
-
client = Groq(api_key=groq_api_key)
|
17 |
-
except Exception as e:
|
18 |
-
st.error(f"Error initializing Groq client: {e}")
|
19 |
-
st.stop()
|
20 |
-
|
21 |
-
# Load PubMedBERT Model (Try Groq API first, then Hugging Face)
|
22 |
-
try:
|
23 |
-
pubmedbert_tokenizer = AutoTokenizer.from_pretrained("NeuML/pubmedbert-base-embeddings")
|
24 |
-
pubmedbert_model = AutoModel.from_pretrained("NeuML/pubmedbert-base-embeddings")
|
25 |
-
pubmedbert_pipeline = pipeline('feature-extraction', model=pubmedbert_model, tokenizer=pubmedbert_tokenizer, device=-1)
|
26 |
-
except Exception:
|
27 |
-
st.warning("Error loading PubMedBERT from Groq API. Using Hugging Face model.")
|
28 |
-
pubmedbert_tokenizer = AutoTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")
|
29 |
-
pubmedbert_model = AutoModelForSequenceClassification.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")
|
30 |
-
pubmedbert_pipeline = pipeline('feature-extraction', model=pubmedbert_model, tokenizer=pubmedbert_tokenizer, device=-1)
|
31 |
-
|
32 |
-
# Initialize FAISS Index
|
33 |
-
embedding_dim = 768
|
34 |
-
index = faiss.IndexFlatL2(embedding_dim)
|
35 |
-
|
36 |
-
# Function to Check Query Category
|
37 |
-
def preprocess_query(query):
|
38 |
-
tokens = query.lower().split()
|
39 |
-
epilepsy_keywords = ["seizure", "epilepsy", "convulsion", "neurology", "brain activity", "headache related to epilepsy"] # Added specific phrase
|
40 |
-
healthcare_keywords = ["headache", "fever", "blood pressure", "diabetes", "cough", "flu", "nutrition", "mental health", "pain", "legs", "body pain", "health", "medical", "symptoms", "treatment", "disease"] # Extended healthcare keywords
|
41 |
-
|
42 |
-
is_epilepsy_related = any(k in tokens for k in epilepsy_keywords)
|
43 |
-
is_healthcare_related = any(k in tokens for k in healthcare_keywords) and not is_epilepsy_related # Healthcare but NOT epilepsy
|
44 |
-
is_general = not is_epilepsy_related and not is_healthcare_related # Truly general queries
|
45 |
-
|
46 |
-
return tokens, is_epilepsy_related, is_healthcare_related, is_general
|
47 |
-
|
48 |
-
# Function to Generate Response with Chat History
|
49 |
-
def generate_response(user_query, chat_history):
|
50 |
-
# Grammatical Correction using LLaMA (Hidden from User)
|
51 |
-
try:
|
52 |
-
correction_prompt = f"""
|
53 |
-
Correct the following user query for grammar and spelling errors, but keep the original intent intact.
|
54 |
-
Do not add or remove any information, just fix the grammar.
|
55 |
-
User Query: {user_query}
|
56 |
-
Corrected Query:
|
57 |
-
"""
|
58 |
-
grammar_completion = client.chat.completions.create(
|
59 |
-
messages=[{"role": "user", "content": correction_prompt}],
|
60 |
-
model="llama-3.3-70b-versatile",
|
61 |
-
stream=False,
|
62 |
-
)
|
63 |
-
corrected_query = grammar_completion.choices[0].message.content.strip()
|
64 |
-
# If correction fails or returns empty, use original query
|
65 |
-
if not corrected_query:
|
66 |
-
corrected_query = user_query
|
67 |
-
except Exception as e:
|
68 |
-
corrected_query = user_query # Fallback to original query if correction fails
|
69 |
-
print(f"⚠️ Grammar correction error: {e}") # Optional: Log the error for debugging
|
70 |
-
|
71 |
-
tokens, is_epilepsy_related, is_healthcare_related, is_general = preprocess_query(corrected_query) # Get category flags
|
72 |
-
|
73 |
-
# Greeting Responses
|
74 |
-
greetings = ["hello", "hi", "hey"]
|
75 |
-
if any(word in tokens for word in greetings):
|
76 |
-
return "👋 Hello! How can I assist you today?"
|
77 |
-
|
78 |
-
# If Epilepsy Related - Use Epilepsy Focused Response
|
79 |
-
if is_epilepsy_related:
|
80 |
-
# Try Getting Medical Insights from PubMedBERT
|
81 |
-
try:
|
82 |
-
pubmedbert_embeddings = pubmedbert_pipeline(corrected_query) # Use corrected query for PubMedBERT
|
83 |
-
embedding_mean = np.mean(pubmedbert_embeddings[0], axis=0)
|
84 |
-
index.add(np.array([embedding_mean]))
|
85 |
-
pubmedbert_insights = "**PubMedBERT Analysis:** ✅ Query is relevant to epilepsy research."
|
86 |
-
except Exception as e:
|
87 |
-
pubmedbert_insights = f"⚠️ Error during PubMedBERT analysis: {e}"
|
88 |
-
|
89 |
-
# Use LLaMA for Final Response Generation with Chat History Context (Epilepsy Focus)
|
90 |
-
try:
|
91 |
-
prompt_history = ""
|
92 |
-
if chat_history:
|
93 |
-
prompt_history += "**Chat History:**\n"
|
94 |
-
for message in chat_history:
|
95 |
-
prompt_history += f"{message['role'].capitalize()}: {message['content']}\n"
|
96 |
-
prompt_history += "\n"
|
97 |
-
|
98 |
-
epilepsy_prompt = f"""
|
99 |
-
{prompt_history}
|
100 |
-
**User Query:** {corrected_query} # Use corrected query for final response generation
|
101 |
-
**Instructions:** Provide a concise, structured, and human-friendly response specifically about epilepsy or seizures, considering the conversation history if available.
|
102 |
-
"""
|
103 |
-
|
104 |
-
chat_completion = client.chat.completions.create(
|
105 |
-
messages=[{"role": "user", "content": epilepsy_prompt}],
|
106 |
-
model="llama-3.3-70b-versatile",
|
107 |
-
stream=False,
|
108 |
-
)
|
109 |
-
model_response = chat_completion.choices[0].message.content.strip()
|
110 |
-
except Exception as e:
|
111 |
-
model_response = f"⚠️ Error generating response with LLaMA: {e}"
|
112 |
-
|
113 |
-
return f"**NeuroGuard:** ✅ **Analysis:**\n{pubmedbert_insights}\n\n**Response:**\n{model_response}"
|
114 |
-
|
115 |
-
# If Healthcare Related but Not Epilepsy - Provide General Wellness Tips and Basic Remedies
|
116 |
-
elif is_healthcare_related:
|
117 |
-
remedy_suggestions = {
|
118 |
-
"headache": "For headaches, you can try resting in a quiet, dark room, staying hydrated, and applying a cold compress to your forehead. Over-the-counter pain relievers like ibuprofen or acetaminophen may also help.",
|
119 |
-
"pain": "For general pain, rest, gentle stretching, and applying heat or ice to the affected area can provide relief. Over-the-counter pain relievers might also be beneficial. ",
|
120 |
-
"legs pain": "For leg pain, try elevating your legs, applying heat or ice, and gentle stretching exercises. Staying hydrated and ensuring good circulation can also help. "
|
121 |
-
# Add more specific remedies as needed
|
122 |
-
}
|
123 |
-
suggested_remedy = "For general wellness:\n" # Default if no specific remedy keyword is found
|
124 |
-
for keyword, remedy in remedy_suggestions.items():
|
125 |
-
if keyword in corrected_query: # Check corrected query for keywords
|
126 |
-
suggested_remedy = remedy + "\n\n" # Use specific remedy if keyword found
|
127 |
-
break # Use only the first matching remedy for now
|
128 |
-
|
129 |
-
general_health_tips = (
|
130 |
-
"- 💧 Stay hydrated by drinking plenty of water throughout the day.\n"
|
131 |
-
"- 🍎 Maintain a balanced diet rich in fruits, vegetables, and whole grains.\n"
|
132 |
-
"- 🚶♀️ Incorporate regular physical activity into your daily routine.\n"
|
133 |
-
"- 😴 Ensure you get adequate sleep to allow your body to rest and recover.\n"
|
134 |
-
"- 🧘 Practice stress-reducing activities such as deep breathing or meditation.\n"
|
135 |
-
"- 🩺 **Important:** These tips are for general wellness and informational purposes only, and are not medical advice. Always consult a healthcare professional for any specific health concerns or before making significant changes to your health regimen."
|
136 |
-
)
|
137 |
-
|
138 |
-
response_content = f"**NeuroGuard:** 🩺 It seems your question '{user_query}' is about general health. While I focus on epilepsy, here's some information that might help:\n\n" # Use original user_query
|
139 |
-
response_content += suggested_remedy
|
140 |
-
response_content += general_health_tips # Always include general tips
|
141 |
-
|
142 |
-
return response_content
|
143 |
-
|
144 |
-
|
145 |
-
# If General Query (Not Healthcare or Epilepsy Related) - Provide a different response
|
146 |
-
elif is_general:
|
147 |
-
return (
|
148 |
-
f"**NeuroGuard:** 💡 My expertise is focused on epilepsy and general health. For topics outside of these areas, like '{user_query}', I may not be the best resource. \n\n" # Use original user_query
|
149 |
-
"**Tip:** For general knowledge questions, you might find better answers using a general search engine or a chatbot trained on a broader range of topics."
|
150 |
-
)
|
151 |
-
|
152 |
-
# Fallback - should ideally not reach here
|
153 |
-
else:
|
154 |
-
return "🤔 I'm not sure how to respond to that."
|
155 |
-
|
156 |
-
|
157 |
-
# Streamlit UI Setup
|
158 |
-
st.set_page_config(page_title="NeuroGuard: Epilepsy & Health Chatbot", layout="wide") # Updated title
|
159 |
-
st.title("🧠 NeuroGuard: Epilepsy & Health Chatbot") # Updated title
|
160 |
-
st.write("💬 Ask me anything about epilepsy, seizures, and general health. I remember our conversation!") # Updated description
|
161 |
-
|
162 |
-
# Initialize Chat History in Session State
|
163 |
-
if "chat_history" not in st.session_state:
|
164 |
-
st.session_state.chat_history = []
|
165 |
-
|
166 |
-
# Display Chat History
|
167 |
-
for message in st.session_state.chat_history:
|
168 |
-
with st.chat_message(message["role"]):
|
169 |
-
st.markdown(message["content"])
|
170 |
-
|
171 |
-
# User Input
|
172 |
-
if prompt := st.chat_input("Type your question here..."):
|
173 |
-
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
174 |
-
with st.chat_message("user"):
|
175 |
-
st.markdown(prompt)
|
176 |
-
|
177 |
-
# Generate Bot Response
|
178 |
-
with st.chat_message("bot"):
|
179 |
-
with st.spinner("🤖 Thinking..."):
|
180 |
-
try:
|
181 |
-
response = generate_response(prompt, st.session_state.chat_history) # Pass chat history here
|
182 |
-
st.markdown(response)
|
183 |
-
st.session_state.chat_history.append({"role": "bot", "content": response})
|
184 |
-
except Exception as e:
|
185 |
-
st.error(f"⚠️ Error processing query: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|