Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +137 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import numpy as np
|
5 |
+
from groq import Groq
|
6 |
+
import io
|
7 |
+
import faiss
|
8 |
+
|
9 |
+
# Groq API Key (and other initializations)
|
10 |
+
groq_api_key = os.environ.get("GROQ_API_KEY")
|
11 |
+
if groq_api_key is None:
|
12 |
+
st.error("GROQ_API_KEY environment variable not set.")
|
13 |
+
st.stop()
|
14 |
+
|
15 |
+
try:
|
16 |
+
client = Groq(api_key=groq_api_key)
|
17 |
+
except Exception as e:
|
18 |
+
st.error(f"Error initializing Groq client: {e}")
|
19 |
+
st.stop()
|
20 |
+
|
21 |
+
try:
|
22 |
+
pubmedbert_tokenizer = AutoTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")
|
23 |
+
pubmedbert_model = AutoModelForSequenceClassification.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")
|
24 |
+
pubmedbert_pipeline = pipeline('feature-extraction', model=pubmedbert_model, tokenizer=pubmedbert_tokenizer, device=-1)
|
25 |
+
except Exception as e:
|
26 |
+
st.error(f"Error loading PubMedBERT: {e}")
|
27 |
+
st.stop()
|
28 |
+
|
29 |
+
embedding_dim = 768
|
30 |
+
index = faiss.IndexFlatL2(embedding_dim)
|
31 |
+
|
32 |
+
if "all_conversations" not in st.session_state:
|
33 |
+
st.session_state.all_conversations = {}
|
34 |
+
if "current_conversation_id" not in st.session_state:
|
35 |
+
st.session_state.current_conversation_id = 0
|
36 |
+
if "current_conversation_messages" not in st.session_state:
|
37 |
+
st.session_state.current_conversation_messages = []
|
38 |
+
if "embeddings" not in st.session_state:
|
39 |
+
st.session_state.embeddings = []
|
40 |
+
|
41 |
+
# Functions
|
42 |
+
def preprocess_query(query):
|
43 |
+
tokens = query.lower().split()
|
44 |
+
keywords = [keyword for keyword in tokens if keyword in ["seizure", "symptoms", "jerks", "confusion", "epilepsy"]]
|
45 |
+
is_medical_related = any(keyword in keywords for keyword in ["seizure", "symptoms", "jerks", "confusion", "epilepsy", "medical"])
|
46 |
+
return tokens, keywords, is_medical_related
|
47 |
+
|
48 |
+
def generate_response(user_query):
|
49 |
+
tokens, keywords, is_medical_related = preprocess_query(user_query)
|
50 |
+
enhanced_query = " ".join(tokens)
|
51 |
+
symptom_insights = ""
|
52 |
+
|
53 |
+
conversation_history = "\n".join([f"{msg['role'].capitalize()}: {msg['content']}" for msg in st.session_state.current_conversation_messages])
|
54 |
+
|
55 |
+
if is_medical_related:
|
56 |
+
try:
|
57 |
+
pubmedbert_embeddings = pubmedbert_pipeline(user_query)
|
58 |
+
embedding_mean = np.mean(pubmedbert_embeddings[0], axis=0)
|
59 |
+
st.session_state.embeddings.append(embedding_mean)
|
60 |
+
index.add(np.array([embedding_mean]))
|
61 |
+
pubmedbert_insights = "PubMedBERT analysis..."
|
62 |
+
model_name = "PubMedBERT"
|
63 |
+
model_response = pubmedbert_insights
|
64 |
+
if "seizure" in keywords or "symptoms" in keywords:
|
65 |
+
remedy_recommendations = "\n\n**General Recommendations:**\n..."
|
66 |
+
else:
|
67 |
+
remedy_recommendations = ""
|
68 |
+
except Exception as e:
|
69 |
+
model_response = f"Error during PubMedBERT: {e}"
|
70 |
+
remedy_recommendations = ""
|
71 |
+
else:
|
72 |
+
model_name = "LLaMA 2 / Mistral 7B (via Groq)"
|
73 |
+
try:
|
74 |
+
prompt = f"""
|
75 |
+
Conversation History:
|
76 |
+
{conversation_history}
|
77 |
+
|
78 |
+
User: {user_query}
|
79 |
+
Bot:
|
80 |
+
"""
|
81 |
+
chat_completion = client.chat.completions.create(
|
82 |
+
messages=[{"role": "user", "content": prompt}],
|
83 |
+
model="llama-3.3-70b-versatile",
|
84 |
+
stream=False,
|
85 |
+
)
|
86 |
+
model_response = chat_completion.choices[0].message.content.strip()
|
87 |
+
except Exception as e:
|
88 |
+
model_response = f"Error from Groq: {e}"
|
89 |
+
remedy_recommendations = ""
|
90 |
+
|
91 |
+
final_response = f"**Enhanced Query:** {enhanced_query}\n\nChatbot Analysis:...\n\nModel Response/Insights:\n{model_response}\n{remedy_recommendations}"
|
92 |
+
return final_response, model_response
|
93 |
+
# Streamlit Interface (and other parts)
|
94 |
+
st.set_page_config(page_title="Epilepsy Chatbot", layout="wide")
|
95 |
+
st.markdown("<style>.chat-message.user {background-color: #e6f7ff; padding: 8px; border-radius: 8px; margin-bottom: 8px;}.chat-message.bot {background-color: #f0f0f0; padding: 8px; border-radius: 8px; margin-bottom: 8px;}.stTextArea textarea {background-color: #f8f8f8;}</style>", unsafe_allow_html=True)
|
96 |
+
|
97 |
+
with st.sidebar:
|
98 |
+
st.title("Conversations")
|
99 |
+
if st.button("New Conversation"):
|
100 |
+
st.session_state.current_conversation_id += 1
|
101 |
+
st.session_state.current_conversation_messages = []
|
102 |
+
st.session_state.embeddings = []
|
103 |
+
index.reset()
|
104 |
+
for conv_id in st.session_state.all_conversations:
|
105 |
+
if st.button(f"Conversation {conv_id}"):
|
106 |
+
st.session_state.current_conversation_id = conv_id
|
107 |
+
st.session_state.current_conversation_messages = st.session_state.all_conversations[conv_id]
|
108 |
+
st.session_state.embeddings = []
|
109 |
+
index.reset()
|
110 |
+
|
111 |
+
st.title("Epilepsy & Seizure Chatbot")
|
112 |
+
st.write("Ask questions related to epilepsy and seizures.")
|
113 |
+
|
114 |
+
for message in st.session_state.current_conversation_messages:
|
115 |
+
with st.chat_message(message["role"]):
|
116 |
+
st.markdown(message["content"])
|
117 |
+
|
118 |
+
if prompt := st.chat_input("Enter your query here:"):
|
119 |
+
st.session_state.current_conversation_messages.append({"role": "user", "content": prompt})
|
120 |
+
with st.chat_message("user"):
|
121 |
+
st.markdown(prompt)
|
122 |
+
|
123 |
+
with st.chat_message("bot"):
|
124 |
+
with st.spinner("Generating response..."):
|
125 |
+
try:
|
126 |
+
full_response, model_only_response = generate_response(prompt)
|
127 |
+
st.markdown(model_only_response)
|
128 |
+
st.session_state.current_conversation_messages.append({"role": "bot", "content": model_only_response})
|
129 |
+
except Exception as e:
|
130 |
+
st.error(f"Error processing query: {e}")
|
131 |
+
|
132 |
+
st.session_state.all_conversations[st.session_state.current_conversation_id] = st.session_state.current_conversation_messages
|
133 |
+
|
134 |
+
# Download Chat
|
135 |
+
if st.session_state.current_conversation_messages:
|
136 |
+
conversation_text = "\n".join([f"{message['role'].capitalize()}: {message['content']}" for message in st.session_state.current_conversation_messages])
|
137 |
+
st.download_button("Download Chat", data=conversation_text, file_name=f"chat_history_{st.session_state.current_conversation_id}.txt")
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
streamlit
|
3 |
+
numpy
|
4 |
+
torch
|
5 |
+
groq
|
6 |
+
faiss-cpu
|