#!/usr/bin/env python """ Gradio demo for Wan2.1 First-Last-Frame-to-Video (FLF2V) Author: """ import os, tempfile, numpy as np, torch, gradio as gr from diffusers import WanImageToVideoPipeline, AutoencoderKLWan from diffusers.utils import export_to_video from transformers import CLIPVisionModel from PIL import Image import torchvision.transforms.functional as TF # --------------------------------------------------------------------- # CONFIG ---------------------------------------------------------------- MODEL_ID = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers" # switch to 1.3B if needed DTYPE = torch.float16 # or torch.bfloat16 on AMP-friendly GPUs MAX_AREA = 1280 * 720 # keep ≤ 720 p DEFAULT_FRAMES = 81 # ≈ 5 s at 16 fps # ---------------------------------------------------------------------- def load_pipeline(): """Lazy-load the huge model once per process.""" image_encoder = CLIPVisionModel.from_pretrained( MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32 ) vae = AutoencoderKLWan.from_pretrained( MODEL_ID, subfolder="vae", torch_dtype=DTYPE ) pipe = WanImageToVideoPipeline.from_pretrained( MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=DTYPE, ) # memory helpers for ≤ 24 GB cards / HF T4-medium pipe.enable_model_cpu_offload() # paged UNet blocks pipe.enable_vae_slicing() # reduces VAE RAM spikes # Optional (needs xformers): pipe.enable_xformers_memory_efficient_attention() return pipe.to("cuda" if torch.cuda.is_available() else "cpu") PIPE = load_pipeline() # ---------------------------------------------------------------------- # UTILS ---------------------------------------------------------------- def aspect_resize(img: Image.Image, max_area=MAX_AREA): """Resize while respecting model patch size (multiple of 8*transformer patch).""" ar = img.height / img.width mod = PIPE.vae_scale_factor_spatial * PIPE.transformer.config.patch_size[1] h = round(np.sqrt(max_area * ar)) // mod * mod w = round(np.sqrt(max_area / ar)) // mod * mod return img.resize((w, h), Image.LANCZOS), h, w def center_crop_resize(img: Image.Image, h, w): ratio = max(w / img.width, h / img.height) img = img.resize((round(img.width * ratio), round(img.height * ratio)), Image.LANCZOS) img = TF.center_crop(img, [h, w]) return img # ---------------------------------------------------------------------- # GENERATE -------------------------------------------------------------- def generate(first_frame, last_frame, prompt, negative_prompt, steps, guidance, num_frames, seed, fps): if seed == -1: seed = torch.seed() generator = torch.Generator(device=PIPE.device).manual_seed(seed) first_frame, h, w = aspect_resize(first_frame) if last_frame.size != first_frame.size: last_frame = center_crop_resize(last_frame, h, w) out = PIPE( image=first_frame, last_image=last_frame, prompt=prompt, negative_prompt=negative_prompt or None, height=h, width=w, num_frames=num_frames, num_inference_steps=steps, guidance_scale=guidance, generator=generator, ).frames[0] # list[pillow] video_path = export_to_video(out, fps=fps) return video_path, seed # ---------------------------------------------------------------------- # UI -------------------------------------------------------------------- with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("## Wan 2.1 FLF2V – First & Last Frame → Video") with gr.Row(): first_img = gr.Image(label="First frame", type="pil") last_img = gr.Image(label="Last frame", type="pil") prompt = gr.Textbox(label="Prompt", placeholder="A blue bird takes off…") negative = gr.Textbox(label="Negative prompt (optional)", placeholder="ugly, blurry") with gr.Accordion("Advanced parameters", open=False): steps = gr.Slider(10, 50, value=30, step=1, label="Sampling steps") guidance = gr.Slider(0.0, 10.0, value=5.5, step=0.1, label="Guidance scale") num_frames = gr.Slider(16, 129, value=DEFAULT_FRAMES, step=1, label="Frames") fps = gr.Slider(4, 30, value=16, step=1, label="FPS (export)") seed = gr.Number(value=-1, precision=0, label="Seed (-1 = random)") run_btn = gr.Button("Generate") video = gr.Video(label="Result (.mp4)") used_seed = gr.Number(label="Seed used", interactive=False) run_btn.click( fn=generate, inputs=[first_img, last_img, prompt, negative, steps, guidance, num_frames, seed, fps], outputs=[video, used_seed] ) if __name__ == "__main__": demo.launch()