Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
"""
|
3 |
Gradio demo for Wan2.1 First-Last-Frame-to-Video (FLF2V)
|
4 |
-
|
|
|
5 |
Author: <your-handle>
|
6 |
"""
|
7 |
|
@@ -16,37 +17,32 @@ import torchvision.transforms.functional as TF
|
|
16 |
|
17 |
# ---------------------------------------------------------------------
|
18 |
# CONFIG ----------------------------------------------------------------
|
19 |
-
MODEL_ID = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers"
|
20 |
-
DTYPE = torch.float16
|
21 |
-
MAX_AREA = 1280 * 720
|
22 |
-
DEFAULT_FRAMES = 81
|
23 |
# ----------------------------------------------------------------------
|
24 |
|
25 |
def load_pipeline():
|
26 |
-
"""Load &
|
27 |
-
# 1) load vision encoder (full precision)
|
28 |
image_encoder = CLIPVisionModel.from_pretrained(
|
29 |
MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32
|
30 |
)
|
31 |
-
# 2) load VAE (half precision)
|
32 |
vae = AutoencoderKLWan.from_pretrained(
|
33 |
MODEL_ID, subfolder="vae", torch_dtype=DTYPE
|
34 |
)
|
35 |
-
# 3) load the video pipeline with Accelerate helpers
|
36 |
pipe = WanImageToVideoPipeline.from_pretrained(
|
37 |
MODEL_ID,
|
38 |
vae=vae,
|
39 |
image_encoder=image_encoder,
|
40 |
torch_dtype=DTYPE,
|
41 |
-
low_cpu_mem_usage=True, # lazy
|
42 |
-
device_map="balanced", #
|
43 |
)
|
44 |
-
|
45 |
-
# 4) use the fast Rust-backed processor
|
46 |
pipe.image_processor = CLIPImageProcessor.from_pretrained(
|
47 |
MODEL_ID, subfolder="image_processor", use_fast=True
|
48 |
)
|
49 |
-
|
50 |
return pipe
|
51 |
|
52 |
PIPE = load_pipeline()
|
@@ -54,7 +50,6 @@ PIPE = load_pipeline()
|
|
54 |
# ----------------------------------------------------------------------
|
55 |
# UTILS ----------------------------------------------------------------
|
56 |
def aspect_resize(img: Image.Image, max_area=MAX_AREA):
|
57 |
-
"""Resize while keeping aspect and patch-size multiples."""
|
58 |
ar = img.height / img.width
|
59 |
mod = PIPE.vae_scale_factor_spatial * PIPE.transformer.config.patch_size[1]
|
60 |
h = round(np.sqrt(max_area * ar)) // mod * mod
|
@@ -62,29 +57,25 @@ def aspect_resize(img: Image.Image, max_area=MAX_AREA):
|
|
62 |
return img.resize((w, h), Image.LANCZOS), h, w
|
63 |
|
64 |
def center_crop_resize(img: Image.Image, h, w):
|
65 |
-
"""Center-crop & resize to target H×W."""
|
66 |
ratio = max(w / img.width, h / img.height)
|
67 |
-
img = img.resize(
|
68 |
-
(round(img.width * ratio), round(img.height * ratio)), Image.LANCZOS
|
69 |
-
)
|
70 |
return TF.center_crop(img, [h, w])
|
71 |
|
72 |
# ----------------------------------------------------------------------
|
73 |
-
# GENERATE
|
74 |
-
def generate(first_frame, last_frame, prompt, negative_prompt,
|
75 |
-
guidance, num_frames, seed, fps):
|
76 |
-
|
77 |
-
|
78 |
-
if seed == -1:
|
79 |
-
seed = torch.seed()
|
80 |
-
gen = torch.Generator(device=PIPE.device).manual_seed(seed)
|
81 |
-
|
82 |
-
# preprocess frames
|
83 |
first_frame, h, w = aspect_resize(first_frame)
|
84 |
if last_frame.size != first_frame.size:
|
85 |
last_frame = center_crop_resize(last_frame, h, w)
|
86 |
|
87 |
-
#
|
|
|
|
|
|
|
|
|
88 |
output = PIPE(
|
89 |
image=first_frame,
|
90 |
last_image=last_frame,
|
@@ -97,20 +88,42 @@ def generate(first_frame, last_frame, prompt, negative_prompt, steps,
|
|
97 |
guidance_scale=guidance,
|
98 |
generator=gen,
|
99 |
)
|
100 |
-
frames = output.frames[0]
|
101 |
|
102 |
-
#
|
|
|
103 |
video_path = export_to_video(frames, fps=fps)
|
104 |
-
|
|
|
|
|
105 |
|
106 |
# ----------------------------------------------------------------------
|
107 |
# UI --------------------------------------------------------------------
|
108 |
-
with gr.Blocks(
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
with gr.Row():
|
112 |
first_img = gr.Image(label="First frame", type="pil")
|
113 |
-
last_img = gr.Image(label="Last frame",
|
114 |
|
115 |
prompt = gr.Textbox(label="Prompt", placeholder="A blue bird takes off…")
|
116 |
negative = gr.Textbox(label="Negative prompt (optional)", placeholder="ugly, blurry")
|
@@ -123,14 +136,16 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
123 |
seed = gr.Number(value=-1, precision=0, label="Seed (-1 = random)")
|
124 |
|
125 |
run_btn = gr.Button("Generate")
|
126 |
-
|
|
|
127 |
used_seed = gr.Number(label="Seed used", interactive=False)
|
128 |
|
129 |
run_btn.click(
|
130 |
fn=generate,
|
131 |
inputs=[first_img, last_img, prompt, negative, steps, guidance, num_frames, seed, fps],
|
132 |
-
outputs=[video, used_seed]
|
|
|
133 |
)
|
134 |
|
135 |
-
|
136 |
demo.launch()
|
|
|
1 |
#!/usr/bin/env python
|
2 |
"""
|
3 |
Gradio demo for Wan2.1 First-Last-Frame-to-Video (FLF2V)
|
4 |
+
– shows streaming status updates
|
5 |
+
– auto-downloads the generated video
|
6 |
Author: <your-handle>
|
7 |
"""
|
8 |
|
|
|
17 |
|
18 |
# ---------------------------------------------------------------------
|
19 |
# CONFIG ----------------------------------------------------------------
|
20 |
+
MODEL_ID = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers"
|
21 |
+
DTYPE = torch.float16
|
22 |
+
MAX_AREA = 1280 * 720
|
23 |
+
DEFAULT_FRAMES = 81
|
24 |
# ----------------------------------------------------------------------
|
25 |
|
26 |
def load_pipeline():
|
27 |
+
"""Load & shard the pipeline across CPU/GPU with Accelerate."""
|
|
|
28 |
image_encoder = CLIPVisionModel.from_pretrained(
|
29 |
MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32
|
30 |
)
|
|
|
31 |
vae = AutoencoderKLWan.from_pretrained(
|
32 |
MODEL_ID, subfolder="vae", torch_dtype=DTYPE
|
33 |
)
|
|
|
34 |
pipe = WanImageToVideoPipeline.from_pretrained(
|
35 |
MODEL_ID,
|
36 |
vae=vae,
|
37 |
image_encoder=image_encoder,
|
38 |
torch_dtype=DTYPE,
|
39 |
+
low_cpu_mem_usage=True, # lazy‐load to CPU RAM
|
40 |
+
device_map="balanced", # shard across CPU/GPU
|
41 |
)
|
42 |
+
# switch to the fast Rust processor
|
|
|
43 |
pipe.image_processor = CLIPImageProcessor.from_pretrained(
|
44 |
MODEL_ID, subfolder="image_processor", use_fast=True
|
45 |
)
|
|
|
46 |
return pipe
|
47 |
|
48 |
PIPE = load_pipeline()
|
|
|
50 |
# ----------------------------------------------------------------------
|
51 |
# UTILS ----------------------------------------------------------------
|
52 |
def aspect_resize(img: Image.Image, max_area=MAX_AREA):
|
|
|
53 |
ar = img.height / img.width
|
54 |
mod = PIPE.vae_scale_factor_spatial * PIPE.transformer.config.patch_size[1]
|
55 |
h = round(np.sqrt(max_area * ar)) // mod * mod
|
|
|
57 |
return img.resize((w, h), Image.LANCZOS), h, w
|
58 |
|
59 |
def center_crop_resize(img: Image.Image, h, w):
|
|
|
60 |
ratio = max(w / img.width, h / img.height)
|
61 |
+
img = img.resize((round(img.width * ratio), round(img.height * ratio)), Image.LANCZOS)
|
|
|
|
|
62 |
return TF.center_crop(img, [h, w])
|
63 |
|
64 |
# ----------------------------------------------------------------------
|
65 |
+
# GENERATE (streaming) --------------------------------------------------
|
66 |
+
def generate(first_frame, last_frame, prompt, negative_prompt,
|
67 |
+
steps, guidance, num_frames, seed, fps):
|
68 |
+
# 1) Preprocess
|
69 |
+
yield None, None, "Preprocessing images..."
|
|
|
|
|
|
|
|
|
|
|
70 |
first_frame, h, w = aspect_resize(first_frame)
|
71 |
if last_frame.size != first_frame.size:
|
72 |
last_frame = center_crop_resize(last_frame, h, w)
|
73 |
|
74 |
+
# 2) Inference
|
75 |
+
yield None, None, f"Running inference ({steps} steps)..."
|
76 |
+
if seed == -1:
|
77 |
+
seed = torch.seed()
|
78 |
+
gen = torch.Generator(device=PIPE.device).manual_seed(seed)
|
79 |
output = PIPE(
|
80 |
image=first_frame,
|
81 |
last_image=last_frame,
|
|
|
88 |
guidance_scale=guidance,
|
89 |
generator=gen,
|
90 |
)
|
91 |
+
frames = output.frames[0]
|
92 |
|
93 |
+
# 3) Export
|
94 |
+
yield None, None, "Exporting video..."
|
95 |
video_path = export_to_video(frames, fps=fps)
|
96 |
+
|
97 |
+
# 4) Done
|
98 |
+
yield video_path, seed, "Done! Your browser will download the video."
|
99 |
|
100 |
# ----------------------------------------------------------------------
|
101 |
# UI --------------------------------------------------------------------
|
102 |
+
with gr.Blocks() as demo:
|
103 |
+
# inject JS for auto-download
|
104 |
+
gr.HTML("""
|
105 |
+
<script>
|
106 |
+
function downloadVideo() {
|
107 |
+
const container = document.getElementById('output_video');
|
108 |
+
if (!container) return;
|
109 |
+
const vid = container.querySelector('video');
|
110 |
+
if (!vid) return;
|
111 |
+
const src = vid.currentSrc;
|
112 |
+
const a = document.createElement('a');
|
113 |
+
a.href = src;
|
114 |
+
a.download = 'output.mp4';
|
115 |
+
document.body.appendChild(a);
|
116 |
+
a.click();
|
117 |
+
document.body.removeChild(a);
|
118 |
+
}
|
119 |
+
</script>
|
120 |
+
""")
|
121 |
+
|
122 |
+
gr.Markdown("## Wan 2.1 FLF2V – Streaming progress + auto-download")
|
123 |
|
124 |
with gr.Row():
|
125 |
first_img = gr.Image(label="First frame", type="pil")
|
126 |
+
last_img = gr.Image(label="Last frame", type="pil")
|
127 |
|
128 |
prompt = gr.Textbox(label="Prompt", placeholder="A blue bird takes off…")
|
129 |
negative = gr.Textbox(label="Negative prompt (optional)", placeholder="ugly, blurry")
|
|
|
136 |
seed = gr.Number(value=-1, precision=0, label="Seed (-1 = random)")
|
137 |
|
138 |
run_btn = gr.Button("Generate")
|
139 |
+
status = gr.Textbox(label="Status", interactive=False)
|
140 |
+
video = gr.Video(label="Result", elem_id="output_video")
|
141 |
used_seed = gr.Number(label="Seed used", interactive=False)
|
142 |
|
143 |
run_btn.click(
|
144 |
fn=generate,
|
145 |
inputs=[first_img, last_img, prompt, negative, steps, guidance, num_frames, seed, fps],
|
146 |
+
outputs=[video, used_seed, status],
|
147 |
+
_js="downloadVideo"
|
148 |
)
|
149 |
|
150 |
+
demo.queue()
|
151 |
demo.launch()
|