Spaces:
Paused
Paused
#!/usr/bin/env python | |
""" | |
Gradio demo for Wan2.1 FLF2V – First & Last Frame → Video | |
""" | |
import os | |
# Persist HF cache on /mnt/data so it survives across launches | |
os.environ["HF_HOME"] = "/mnt/data/huggingface" | |
import numpy as np | |
import torch | |
import gradio as gr | |
from diffusers import WanImageToVideoPipeline, AutoencoderKLWan | |
from diffusers.utils import export_to_video | |
from transformers import CLIPVisionModel | |
from PIL import Image | |
import torchvision.transforms.functional as TF | |
# ---------------------------------------------------------------------- | |
# CONFIG | |
# ---------------------------------------------------------------------- | |
MODEL_ID = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers" | |
DTYPE = torch.float16 | |
MAX_AREA = 1280 * 720 | |
DEFAULT_FRAMES = 81 | |
# ---------------------------------------------------------------------- | |
# PIPELINE LOADING | |
# ---------------------------------------------------------------------- | |
def load_pipeline(): | |
# 1) load CLIP image encoder in full precision | |
image_encoder = CLIPVisionModel.from_pretrained( | |
MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32 | |
) | |
# 2) load VAE in reduced precision | |
vae = AutoencoderKLWan.from_pretrained( | |
MODEL_ID, subfolder="vae", torch_dtype=DTYPE | |
) | |
# 3) load the WanImageToVideo pipeline, balanced across GPU/CPU | |
pipe = WanImageToVideoPipeline.from_pretrained( | |
MODEL_ID, | |
vae=vae, | |
image_encoder=image_encoder, | |
torch_dtype=DTYPE, | |
device_map="balanced", # auto-offload large modules to CPU | |
) | |
# 4) reduce VAE peaks & enable CPU offload for everything else | |
pipe.enable_vae_slicing() | |
pipe.enable_model_cpu_offload() | |
return pipe | |
# create once, at import time | |
PIPE = load_pipeline() | |
# ---------------------------------------------------------------------- | |
# IMAGE PREPROCESSING UTILS | |
# ---------------------------------------------------------------------- | |
def aspect_resize(img: Image.Image, max_area=MAX_AREA): | |
ar = img.height / img.width | |
# ensure multiple of patch size | |
mod = PIPE.vae_scale_factor_spatial * PIPE.transformer.config.patch_size[1] | |
h = round(np.sqrt(max_area * ar)) // mod * mod | |
w = round(np.sqrt(max_area / ar)) // mod * mod | |
return img.resize((w, h), Image.LANCZOS), h, w | |
def center_crop_resize(img: Image.Image, h, w): | |
ratio = max(w / img.width, h / img.height) | |
img = img.resize( | |
(round(img.width * ratio), round(img.height * ratio)), | |
Image.LANCZOS | |
) | |
return TF.center_crop(img, [h, w]) | |
# ---------------------------------------------------------------------- | |
# GENERATION FUNCTION | |
# ---------------------------------------------------------------------- | |
def generate( | |
first_frame: Image.Image, | |
last_frame: Image.Image, | |
prompt: str, | |
negative: str, | |
steps: int, | |
guidance: float, | |
num_frames: int, | |
seed: int, | |
fps: int, | |
progress= gr.Progress() | |
): | |
# seed | |
if seed == -1: | |
seed = torch.seed() | |
gen = torch.Generator(device=PIPE.device).manual_seed(seed) | |
# initial progress | |
progress(0, steps, desc="Preprocessing images") | |
# resize / crop | |
first_frame, h, w = aspect_resize(first_frame) | |
if last_frame.size != first_frame.size: | |
last_frame = center_crop_resize(last_frame, h, w) | |
# callback to update progress bar on each denoising step | |
def progress_callback(step, timestep, latents): | |
progress(step, steps, desc=f"Inference step {step}/{steps}") | |
# run the pipeline (streams progress via callback) | |
result = PIPE( | |
image=first_frame, | |
last_image=last_frame, | |
prompt=prompt, | |
negative_prompt=negative or None, | |
height=h, | |
width=w, | |
num_frames=num_frames, | |
num_inference_steps=steps, | |
guidance_scale=guidance, | |
generator=gen, | |
callback=progress_callback, | |
) | |
# assemble and export to video | |
frames = result.frames[0] # list of PIL images | |
video_path = export_to_video(frames, fps=fps) | |
# return video and seed used (Gradio will auto-download the .mp4) | |
return video_path, seed | |
# ---------------------------------------------------------------------- | |
# GRADIO UI | |
# ---------------------------------------------------------------------- | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("## Wan 2.1 FLF2V – First & Last Frame → Video") | |
with gr.Row(): | |
first_img = gr.Image(label="First frame", type="pil") | |
last_img = gr.Image(label="Last frame", type="pil") | |
prompt = gr.Textbox(label="Prompt", placeholder="A blue bird takes off…") | |
negative = gr.Textbox(label="Negative prompt (optional)", placeholder="ugly, blurry") | |
with gr.Accordion("Advanced parameters", open=False): | |
steps = gr.Slider(10, 50, value=30, step=1, label="Sampling steps") | |
guidance = gr.Slider(0.0, 10.0, value=5.5, step=0.1, label="Guidance scale") | |
num_frames = gr.Slider(16, 129, value=DEFAULT_FRAMES, step=1, label="Number of frames") | |
fps = gr.Slider(4, 30, value=16, step=1, label="FPS (export)") | |
seed = gr.Number(value=-1, precision=0, label="Seed (-1 = random)") | |
run_btn = gr.Button("Generate") | |
video_out = gr.Video(label="Result (.mp4)") | |
used_seed = gr.Number(label="Seed used", interactive=False) | |
run_btn.click( | |
fn=generate, | |
inputs=[ first_img, last_img, prompt, negative, | |
steps, guidance, num_frames, seed, fps ], | |
outputs=[ video_out, used_seed ] | |
) | |
# no special queue args needed | |
demo.launch() |