import re import pandas as pd from datasets_.commonvoice import commonvoice from datasets_.fleurs import fleurs from datasets_.flores import flores from joblib.memory import Memory from langcodes import Language, standardize_tag from language_data.population_data import LANGUAGE_SPEAKING_POPULATION cache = Memory(location=".cache", verbose=0).cache # load general language data languages = { lang: pop for lang, pop in LANGUAGE_SPEAKING_POPULATION.items() if not re.match(r".*-[A-Z]{2}$", lang) } languages = pd.DataFrame(list(languages.items()), columns=["bcp_47", "speakers"]) languages["language_name"] = languages["bcp_47"].apply( lambda x: Language.get(x).display_name() ) languages["autonym"] = languages["bcp_47"].apply( lambda x: Language.get(x).autonym().title() ) glottolog = pd.read_csv( "data/glottolog_languoid.csv/languoid.csv", na_values=[""], keep_default_na=False ) # Min _Nan_ Chinese is not N/A! glottolog["bcp_47"] = glottolog["iso639P3code"].apply( lambda x: standardize_tag(x, macro=True) if not pd.isna(x) else None ) @cache def language_family(bcp_47): languoid = glottolog[glottolog["bcp_47"] == bcp_47].iloc[0] if pd.isna(languoid["family_id"]): return None family = glottolog[glottolog["id"] == languoid["family_id"]].iloc[0] return family["name"] languages["family"] = languages["bcp_47"].apply(language_family) # load script codes and names scripts = pd.read_csv("data/ScriptCodes.csv").rename( columns={"Code": "iso15924", "English Name": "script_name"} ) def script_name(iso15924): return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0] # merge data # always "left" because keep it simple for now languages = pd.merge(languages, flores, on="bcp_47", how="left") languages = pd.merge(languages, fleurs, on="bcp_47", how="left") languages = pd.merge(languages, commonvoice, on="bcp_47", how="left") languages["in_benchmark"] = languages["bcp_47"].isin(flores["bcp_47"]) languages = languages.sort_values(by="speakers", ascending=False)