David Pomerenke
commited on
Commit
·
7a9c651
1
Parent(s):
9f25f4c
Better results format (flatten + aggregate 3x), push results to hub
Browse files- evals.py +85 -157
- results.json +0 -0
evals.py
CHANGED
@@ -12,9 +12,10 @@ import evaluate
|
|
12 |
import pandas as pd
|
13 |
import requests
|
14 |
from aiolimiter import AsyncLimiter
|
|
|
15 |
from dotenv import load_dotenv
|
16 |
from elevenlabs import AsyncElevenLabs
|
17 |
-
from huggingface_hub import AsyncInferenceClient
|
18 |
from joblib.memory import Memory
|
19 |
from langcodes import Language, standardize_tag
|
20 |
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
|
@@ -274,13 +275,19 @@ async def translate_and_evaluate(model, original_language_bcp_47, sentence_nr):
|
|
274 |
else:
|
275 |
bleu_score = {"bleu": 0}
|
276 |
chrf_score = chrf.compute(predictions=[prediction], references=[target_sentence])
|
277 |
-
return
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
|
286 |
metadata = pd.read_csv("data/floresp-v2.0-rc.3/metadata_dev.tsv", sep="\t")
|
@@ -331,16 +338,20 @@ async def classify_and_evaluate(model, language_bcp_47, nr):
|
|
331 |
max_tokens=5,
|
332 |
)
|
333 |
try:
|
334 |
-
|
335 |
except ValueError:
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
|
|
|
|
|
|
|
|
344 |
|
345 |
|
346 |
def corrupt_sentence(sentence):
|
@@ -381,12 +392,16 @@ async def mlm_and_evaluate(model, language_bcp_47, nr):
|
|
381 |
)
|
382 |
prediction = reply.choices[0].message.content.strip()
|
383 |
chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text])
|
384 |
-
return
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
|
|
|
|
|
|
|
|
390 |
|
391 |
|
392 |
@cache
|
@@ -440,16 +455,25 @@ async def transcribe_and_evaluate(model, language_bcp_47, nr):
|
|
440 |
path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}"
|
441 |
pred = await transcribe(path, model=model)
|
442 |
wer_score = wer.compute(predictions=[pred], references=[item.transcription])
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
|
|
|
|
451 |
|
452 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
# ===== run evaluation and aggregate results =====
|
454 |
|
455 |
|
@@ -458,9 +482,10 @@ def mean(lst):
|
|
458 |
|
459 |
|
460 |
async def main():
|
461 |
-
print("
|
462 |
-
|
463 |
-
|
|
|
464 |
for i in range(n_sentences)
|
465 |
for original_language in langs_eval.itertuples()
|
466 |
for model in models
|
@@ -470,130 +495,33 @@ async def main():
|
|
470 |
or original_language.bcp_47 in langs_eval_detailed.bcp_47.values
|
471 |
)
|
472 |
]
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
for i in range(n_sentences)
|
478 |
-
for language in langs_eval.itertuples()
|
479 |
-
for model in models
|
480 |
-
if language.in_benchmark
|
481 |
-
and (
|
482 |
-
model == model_fast or language.bcp_47 in langs_eval_detailed.bcp_47.values
|
483 |
-
)
|
484 |
-
]
|
485 |
-
classification_scores = await tqdm_asyncio.gather(
|
486 |
-
*classification_scores, miniters=1
|
487 |
)
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
)
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
)
|
511 |
-
]
|
512 |
-
transcription_scores = await tqdm_asyncio.gather(*transcription_scores, miniters=1)
|
513 |
-
all_results = []
|
514 |
-
for language in languages.itertuples():
|
515 |
-
results = []
|
516 |
-
for model in models:
|
517 |
-
scores_mt = [
|
518 |
-
score
|
519 |
-
for score in translation_scores
|
520 |
-
if score["bcp_47"] == language.bcp_47 and score["model"] == model
|
521 |
-
]
|
522 |
-
scores_cls = [
|
523 |
-
score
|
524 |
-
for score in classification_scores
|
525 |
-
if score["bcp_47"] == language.bcp_47 and score["model"] == model
|
526 |
-
]
|
527 |
-
scores_mlm = [
|
528 |
-
score
|
529 |
-
for score in mlm_scores
|
530 |
-
if score["bcp_47"] == language.bcp_47 and score["model"] == model
|
531 |
-
]
|
532 |
-
if not scores_mt:
|
533 |
-
continue
|
534 |
-
mt_bleu = mean([s["mt_bleu"] for s in scores_mt])
|
535 |
-
mt_chrf = mean([s["mt_chrf"] for s in scores_mt])
|
536 |
-
cls_acc = mean([s["true"] == s["pred"] for s in scores_cls])
|
537 |
-
mlm_chrf = mean([s["mlm_chrf"] for s in scores_mlm])
|
538 |
-
t2t_score = (mt_chrf + cls_acc + mlm_chrf) / 3
|
539 |
-
results.append(
|
540 |
-
{
|
541 |
-
"model": model,
|
542 |
-
"model_type": "text-to-text",
|
543 |
-
"mt_bleu": mt_bleu,
|
544 |
-
"mt_chrf": mt_chrf,
|
545 |
-
"cls_acc": cls_acc,
|
546 |
-
"mlm_chrf": mlm_chrf,
|
547 |
-
"t2t_score": t2t_score,
|
548 |
-
}
|
549 |
-
)
|
550 |
-
for model in transcription_models:
|
551 |
-
scores_asr = [
|
552 |
-
score
|
553 |
-
for score in transcription_scores
|
554 |
-
if score["bcp_47"] == language.bcp_47 and score["model"] == model
|
555 |
-
]
|
556 |
-
if not scores_asr:
|
557 |
-
continue
|
558 |
-
asr_wer = mean([s["asr_wer"] for s in scores_asr])
|
559 |
-
asr_chrf = mean([s["asr_chrf"] for s in scores_asr])
|
560 |
-
results.append(
|
561 |
-
{
|
562 |
-
"model": model,
|
563 |
-
"model_type": "speech-to-text",
|
564 |
-
"asr_wer": asr_wer,
|
565 |
-
"asr_chrf": asr_chrf,
|
566 |
-
"s2t_score": (asr_wer + asr_chrf) / 2,
|
567 |
-
}
|
568 |
-
)
|
569 |
-
language_results = {
|
570 |
-
"language_name": language.language_name,
|
571 |
-
"bcp_47": language.bcp_47,
|
572 |
-
"speakers": language.speakers,
|
573 |
-
"scores": results,
|
574 |
-
"commonvoice_hours": language.commonvoice_hours
|
575 |
-
if not pd.isna(language.commonvoice_hours)
|
576 |
-
else None,
|
577 |
-
"commonvoice_locale": language.commonvoice_locale
|
578 |
-
if not pd.isna(language.commonvoice_locale)
|
579 |
-
else None,
|
580 |
-
"population": population(language.bcp_47),
|
581 |
-
"language_family": language_family(language.bcp_47),
|
582 |
-
}
|
583 |
-
for score in [
|
584 |
-
"mt_bleu",
|
585 |
-
"mt_chrf",
|
586 |
-
"cls_acc",
|
587 |
-
"mlm_chrf",
|
588 |
-
"asr_wer",
|
589 |
-
"asr_chrf",
|
590 |
-
"t2t_score",
|
591 |
-
"s2t_score",
|
592 |
-
]:
|
593 |
-
language_results[score] = mean([s[score] for s in results if score in s])
|
594 |
-
all_results.append(language_results)
|
595 |
-
with open("results.json", "w") as f:
|
596 |
-
json.dump(all_results, f, indent=2, ensure_ascii=False)
|
597 |
|
598 |
|
599 |
if __name__ == "__main__":
|
|
|
12 |
import pandas as pd
|
13 |
import requests
|
14 |
from aiolimiter import AsyncLimiter
|
15 |
+
from datasets import Dataset
|
16 |
from dotenv import load_dotenv
|
17 |
from elevenlabs import AsyncElevenLabs
|
18 |
+
from huggingface_hub import AsyncInferenceClient, HfApi
|
19 |
from joblib.memory import Memory
|
20 |
from langcodes import Language, standardize_tag
|
21 |
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
|
|
|
275 |
else:
|
276 |
bleu_score = {"bleu": 0}
|
277 |
chrf_score = chrf.compute(predictions=[prediction], references=[target_sentence])
|
278 |
+
return [
|
279 |
+
{
|
280 |
+
"model": model,
|
281 |
+
"bcp_47": original_language["bcp_47"],
|
282 |
+
"task": "translation",
|
283 |
+
"metric": metric,
|
284 |
+
"score": score,
|
285 |
+
"sentence_nr": sentence_nr,
|
286 |
+
}
|
287 |
+
for metric, score in zip(
|
288 |
+
["bleu", "chrf"], [bleu_score["bleu"], chrf_score["score"] / 100]
|
289 |
+
)
|
290 |
+
]
|
291 |
|
292 |
|
293 |
metadata = pd.read_csv("data/floresp-v2.0-rc.3/metadata_dev.tsv", sep="\t")
|
|
|
338 |
max_tokens=5,
|
339 |
)
|
340 |
try:
|
341 |
+
pred = int(reply.choices[0].message.content.strip())
|
342 |
except ValueError:
|
343 |
+
pred = -1
|
344 |
+
true = topic_to_number(test_paragraph.topic)
|
345 |
+
return [
|
346 |
+
{
|
347 |
+
"model": model,
|
348 |
+
"bcp_47": language["bcp_47"],
|
349 |
+
"task": "classification",
|
350 |
+
"metric": "accuracy",
|
351 |
+
"score": int(pred == true),
|
352 |
+
"sentence_nr": nr,
|
353 |
+
}
|
354 |
+
]
|
355 |
|
356 |
|
357 |
def corrupt_sentence(sentence):
|
|
|
392 |
)
|
393 |
prediction = reply.choices[0].message.content.strip()
|
394 |
chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text])
|
395 |
+
return [
|
396 |
+
{
|
397 |
+
"model": model,
|
398 |
+
"bcp_47": language["bcp_47"],
|
399 |
+
"task": "language_modeling",
|
400 |
+
"metric": "chrf",
|
401 |
+
"score": chrf_score["score"] / 100,
|
402 |
+
"sentence_nr": nr,
|
403 |
+
}
|
404 |
+
]
|
405 |
|
406 |
|
407 |
@cache
|
|
|
455 |
path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}"
|
456 |
pred = await transcribe(path, model=model)
|
457 |
wer_score = wer.compute(predictions=[pred], references=[item.transcription])
|
458 |
+
return [
|
459 |
+
{
|
460 |
+
"model": model,
|
461 |
+
"bcp_47": language["bcp_47"],
|
462 |
+
"task": "asr",
|
463 |
+
"metric": "wer",
|
464 |
+
"score": wer_score,
|
465 |
+
"sentence_nr": nr,
|
466 |
+
}
|
467 |
+
]
|
468 |
|
469 |
|
470 |
+
tasks = [
|
471 |
+
translate_and_evaluate,
|
472 |
+
classify_and_evaluate,
|
473 |
+
mlm_and_evaluate,
|
474 |
+
# transcribe_and_evaluate,
|
475 |
+
]
|
476 |
+
|
477 |
# ===== run evaluation and aggregate results =====
|
478 |
|
479 |
|
|
|
482 |
|
483 |
|
484 |
async def main():
|
485 |
+
print("running evaluations")
|
486 |
+
results = [
|
487 |
+
task(model, original_language.bcp_47, i)
|
488 |
+
for task in tasks
|
489 |
for i in range(n_sentences)
|
490 |
for original_language in langs_eval.itertuples()
|
491 |
for model in models
|
|
|
495 |
or original_language.bcp_47 in langs_eval_detailed.bcp_47.values
|
496 |
)
|
497 |
]
|
498 |
+
results = await tqdm_asyncio.gather(*results, miniters=1)
|
499 |
+
results = pd.DataFrame([r for rs in results for r in rs])
|
500 |
+
results = (
|
501 |
+
results.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
502 |
)
|
503 |
+
lang_results = (
|
504 |
+
results.groupby(["bcp_47", "task", "metric"])
|
505 |
+
.agg({"score": "mean", "model": "nunique"})
|
506 |
+
.reset_index()
|
507 |
+
)
|
508 |
+
lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
509 |
+
model_results = (
|
510 |
+
results.groupby(["model", "task", "metric"])
|
511 |
+
.agg({"score": "mean", "bcp_47": "nunique"})
|
512 |
+
.reset_index()
|
513 |
+
)
|
514 |
+
task_results = (
|
515 |
+
results.groupby(["task", "metric"])
|
516 |
+
.agg({"score": "mean", "bcp_47": "nunique", "model": "nunique"})
|
517 |
+
.reset_index()
|
518 |
+
)
|
519 |
+
HF_REPO = "datenlabor-bmz/global-language-ai-evals"
|
520 |
+
HF_TOKEN = getenv("HUGGINGFACE_ACCESS_TOKEN")
|
521 |
+
Dataset.from_pandas(results).push_to_hub(HF_REPO, "scores", token=HF_TOKEN)
|
522 |
+
Dataset.from_pandas(lang_results).push_to_hub(HF_REPO, "languages", token=HF_TOKEN)
|
523 |
+
Dataset.from_pandas(model_results).push_to_hub(HF_REPO, "models", token=HF_TOKEN)
|
524 |
+
Dataset.from_pandas(task_results).push_to_hub(HF_REPO, "tasks", token=HF_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
525 |
|
526 |
|
527 |
if __name__ == "__main__":
|
results.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|