David Pomerenke commited on
Commit
11c32ae
·
1 Parent(s): c5278dd

Datasets table

Browse files
data/datasets.json ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "name": "FLORES+",
4
+ "author": "Meta",
5
+ "url": "https://huggingface.co/datasets/openlanguagedata/flores_plus",
6
+ "n_languages": 200,
7
+ "tasks": [
8
+ "translation",
9
+ "classification",
10
+ "language_modeling"
11
+ ],
12
+ "parallel": true,
13
+ "base": "FLORES",
14
+ "implemented": true
15
+ },
16
+ {
17
+ "name": "FLEURS",
18
+ "author": "Meta",
19
+ "url": "https://huggingface.co/datasets/google/fleurs",
20
+ "n_languages": 102,
21
+ "tasks": [
22
+ "speech_recognition"
23
+ ],
24
+ "parallel": true,
25
+ "base": "FLORES",
26
+ "implemented": true
27
+ },
28
+ {
29
+ "name": "CommonVoice",
30
+ "author": "Mozilla",
31
+ "url": "https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0",
32
+ "n_languages": 124,
33
+ "tasks": [
34
+ "speech_recognition"
35
+ ],
36
+ "parallel": null
37
+ },
38
+ {
39
+ "name": "MMMLU",
40
+ "author": "OpenAI",
41
+ "url": "https://huggingface.co/datasets/openai/MMMLU",
42
+ "n_languages": "14",
43
+ "tasks": [
44
+ "question_answering"
45
+ ],
46
+ "parallel": true,
47
+ "base": "MMLU"
48
+ },
49
+ {
50
+ "name": "AfriMMLU",
51
+ "author": "Masakhane",
52
+ "url": "https://huggingface.co/datasets/masakhane/afrimmlu",
53
+ "n_languages": "17",
54
+ "tasks": [
55
+ "question_answering"
56
+ ],
57
+ "parallel": true,
58
+ "base": "MMLU"
59
+ },
60
+ {
61
+ "name": "Okapi MMLU",
62
+ "author": "Okapi",
63
+ "url": "https://huggingface.co/datasets/jon-tow/okapi_mmlu",
64
+ "n_languages": 16,
65
+ "tasks": [
66
+ "question_answering"
67
+ ],
68
+ "parallel": true,
69
+ "base": "MMLU"
70
+ },
71
+ {
72
+ "name": "Global MMLU",
73
+ "author": "Cohere",
74
+ "url": "https://huggingface.co/datasets/CohereForAI/Global-MMLU",
75
+ "n_languages": 42,
76
+ "tasks": [
77
+ "question_answering"
78
+ ],
79
+ "parallel": true,
80
+ "base": "MMLU"
81
+ },
82
+ {
83
+ "name": "MGSM",
84
+ "author": "Google",
85
+ "url": "https://huggingface.co/datasets/juletxara/mgsm",
86
+ "n_languages": 10,
87
+ "tasks": [
88
+ "math"
89
+ ],
90
+ "parallel": true,
91
+ "base": "MGSM"
92
+ },
93
+ {
94
+ "name": "AfriMGSM",
95
+ "author": "Masakhane",
96
+ "url": "https://huggingface.co/datasets/masakhane/afrimgsm",
97
+ "n_languages": 18,
98
+ "tasks": [
99
+ "math"
100
+ ],
101
+ "parallel": true,
102
+ "base": "MGSM"
103
+ },
104
+ {
105
+ "name": "Okapi ARC Challenge",
106
+ "author": "Okapi",
107
+ "url": "https://huggingface.co/datasets/jon-tow/okapi_arc_challenge",
108
+ "n_languages": 31,
109
+ "tasks": [
110
+ "question_answering"
111
+ ],
112
+ "parallel": true,
113
+ "base": "AI2 ARC"
114
+ },
115
+ {
116
+ "name": "Uhuru ARC Easy",
117
+ "author": "Masakhane",
118
+ "url": "https://huggingface.co/datasets/masakhane/uhura-arc-easy",
119
+ "n_languages": 6,
120
+ "tasks": [
121
+ "question_answering"
122
+ ],
123
+ "parallel": true,
124
+ "base": "AI2 ARC"
125
+ },
126
+ {
127
+ "name": "Okapi TruthfulQA",
128
+ "author": "Okapi",
129
+ "url": "https://huggingface.co/datasets/jon-tow/okapi_truthfulqa/tree/main/data",
130
+ "n_languages": 31,
131
+ "tasks": [
132
+ "question_answering"
133
+ ],
134
+ "parallel": true,
135
+ "base": "TruthfulQA"
136
+ },
137
+ {
138
+ "name": "Uhura TruthfulQA",
139
+ "author": "Masakhane",
140
+ "url": "https://huggingface.co/datasets/masakhane/uhura-truthfulqa",
141
+ "n_languages": 6,
142
+ "tasks": [
143
+ "question_answering"
144
+ ],
145
+ "parallel": true,
146
+ "base": "TruthfulQA"
147
+ },
148
+ {
149
+ "name": "XNLI",
150
+ "author": "Meta",
151
+ "url": "https://huggingface.co/datasets/facebook/xnli",
152
+ "n_languages": 14,
153
+ "tasks": [
154
+ "classification"
155
+ ],
156
+ "parallel": true,
157
+ "base": "XNLI"
158
+ },
159
+ {
160
+ "name": "AfriXNLI",
161
+ "author": "Masakhane",
162
+ "url": "https://huggingface.co/datasets/masakhane/afrixnli",
163
+ "n_languages": 18,
164
+ "tasks": [
165
+ "classification"
166
+ ],
167
+ "parallel": true,
168
+ "base": "XNLI"
169
+ },
170
+ {
171
+ "name": "Okapi HellaSwag",
172
+ "author": "Okapi",
173
+ "url": "https://huggingface.co/datasets/jon-tow/okapi_hellaswag",
174
+ "n_languages": 31,
175
+ "tasks": [
176
+ "question_answering"
177
+ ],
178
+ "parallel": true,
179
+ "base": "HellaSwag"
180
+ },
181
+ {
182
+ "name": "WikiANN / PAN-X",
183
+ "author": "Academic",
184
+ "url": "https://huggingface.co/datasets/unimelb-nlp/wikiann",
185
+ "n_languages": 176,
186
+ "tasks": [
187
+ "ner"
188
+ ],
189
+ "parallel": false
190
+ },
191
+ {
192
+ "name": "MSVAMP",
193
+ "author": "Microsoft",
194
+ "url": "https://huggingface.co/datasets/Mathoctopus/MSVAMP",
195
+ "n_languages": 10,
196
+ "tasks": [
197
+ "math"
198
+ ],
199
+ "parallel": true
200
+ },
201
+ {
202
+ "name": "XLSUM",
203
+ "author": "Academic",
204
+ "url": "https://huggingface.co/datasets/csebuetnlp/xlsum",
205
+ "n_languages": 45,
206
+ "tasks": [
207
+ "summarization"
208
+ ],
209
+ "parallel": true
210
+ },
211
+ {
212
+ "name": "SEA-IFEVAL",
213
+ "author": "AI Singapore",
214
+ "url": "https://huggingface.co/datasets/aisingapore/instruction_following-ifeval",
215
+ "n_languages": 7,
216
+ "tasks": [
217
+ "instruction_following"
218
+ ],
219
+ "parallel": true,
220
+ "base": "IFEVAL"
221
+ },
222
+ {
223
+ "name": "XTREME",
224
+ "author": "Google",
225
+ "url": "https://huggingface.co/datasets/google/xtreme",
226
+ "n_languages": 40,
227
+ "tasks": [
228
+ "translation",
229
+ "classification",
230
+ "question_answering",
231
+ "ner"
232
+ ],
233
+ "parallel": null
234
+ },
235
+ {
236
+ "name": "XGLUE",
237
+ "author": "Microsoft",
238
+ "url": "https://huggingface.co/datasets/microsoft/xglue",
239
+ "n_languages": 18,
240
+ "tasks": [
241
+ "pos"
242
+ ],
243
+ "parallel": null,
244
+ "base": "GLUE"
245
+ },
246
+ {
247
+ "name": "IndicGLUE",
248
+ "author": "AI4Bharat",
249
+ "url": "https://huggingface.co/datasets/ai4bharat/indic_glue",
250
+ "n_languages": 11,
251
+ "tasks": [
252
+ "question_answering"
253
+ ],
254
+ "parallel": null,
255
+ "base": "GLUE"
256
+ },
257
+ {
258
+ "name": "Opus Gnome",
259
+ "author": "Helsinki NLP",
260
+ "url": "https://huggingface.co/datasets/Helsinki-NLP/opus_gnome",
261
+ "n_languages": 187,
262
+ "tasks": [
263
+ "translation"
264
+ ],
265
+ "parallel": true
266
+ },
267
+ {
268
+ "name": "Opus Paracrawl",
269
+ "author": "Helsinki NLP",
270
+ "url": "https://huggingface.co/datasets/Helsinki-NLP/opus_paracrawl",
271
+ "n_languages": 43,
272
+ "tasks": [
273
+ "translation"
274
+ ],
275
+ "parallel": false
276
+ },
277
+ {
278
+ "name": "CCAligned",
279
+ "author": "Meta",
280
+ "url": "https://huggingface.co/datasets/ahelk/ccaligned_multilingual",
281
+ "n_languages": 137,
282
+ "tasks": [
283
+ "translation"
284
+ ],
285
+ "parallel": false
286
+ },
287
+ {
288
+ "name": "OPUS Collection",
289
+ "author": "Helsinki NLP",
290
+ "url": "https://opus.nlpl.eu/",
291
+ "n_languages": 747,
292
+ "tasks": [
293
+ "translation"
294
+ ],
295
+ "parallel": false
296
+ },
297
+ {
298
+ "name": "MasakhaNER",
299
+ "author": "Masakhane",
300
+ "url": "https://huggingface.co/datasets/masakhane/masakhaner",
301
+ "n_languages": 10,
302
+ "tasks": [
303
+ "ner"
304
+ ],
305
+ "parallel": null
306
+ },
307
+ {
308
+ "name": "Multilingual Sentiments",
309
+ "url": "https://huggingface.co/datasets/tyqiangz/multilingual-sentiments",
310
+ "n_languages": 12,
311
+ "tasks": [
312
+ "sentiment_analysis"
313
+ ],
314
+ "parallel": null
315
+ },
316
+ {
317
+ "name": "CulturaX",
318
+ "author": "Academic",
319
+ "url": "https://huggingface.co/datasets/uonlp/CulturaX",
320
+ "n_languages": 167,
321
+ "tasks": [
322
+ "language_modeling"
323
+ ],
324
+ "parallel": false
325
+ },
326
+ {
327
+ "name": "Tülu 3 SFT Mixture",
328
+ "author": "AllenAI",
329
+ "url": "https://huggingface.co/datasets/allenai/tulu-3-sft-mixture",
330
+ "n_languages": 70,
331
+ "tasks": [
332
+ "instruction_following"
333
+ ],
334
+ "parallel": false
335
+ },
336
+ {
337
+ "name": "xP3",
338
+ "author": "BigScience",
339
+ "url": "https://huggingface.co/datasets/bigscience/xP3",
340
+ "n_languages": 46,
341
+ "tasks": [
342
+ "instruction_following"
343
+ ],
344
+ "parallel": false
345
+ },
346
+ {
347
+ "name": "Aya",
348
+ "author": "Cohere",
349
+ "url": "https://huggingface.co/datasets/CohereForAI/aya_dataset",
350
+ "n_languages": 65,
351
+ "tasks": [
352
+ "instruction_following"
353
+ ],
354
+ "parallel": null
355
+ },
356
+ {
357
+ "name": "Lanfrica",
358
+ "author": "Lanfrica",
359
+ "url": "https://lanfrica.com/records?language=yor&task=machine%20translation",
360
+ "n_languages": 2200,
361
+ "tasks": [
362
+ "datasets"
363
+ ],
364
+ "parallel": null
365
+ },
366
+ {
367
+ "name": "HuggingFace Languages",
368
+ "author": "HuggingFace",
369
+ "url": "https://huggingface.co/languages",
370
+ "n_languages": 4680,
371
+ "tasks": [
372
+ "datasets",
373
+ "models"
374
+ ],
375
+ "parallel": null
376
+ },
377
+ {
378
+ "name": "HuggingFace Multilingual Datasets",
379
+ "author": "HuggingFace",
380
+ "url": "https://huggingface.co/datasets?other=multilinguality:multilingual",
381
+ "n_languages": null,
382
+ "tasks": [
383
+ "datasets"
384
+ ],
385
+ "parallel": false
386
+ }
387
+ ]
datasets.json ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "name": "FLORES+",
4
+ "author": "Meta",
5
+ "url": "https://huggingface.co/datasets/openlanguagedata/flores_plus",
6
+ "n_languages": 185,
7
+ "tasks": [
8
+ "translation",
9
+ "classification",
10
+ "language_modeling"
11
+ ],
12
+ "parallel": true,
13
+ "base": "FLORES",
14
+ "implemented": true
15
+ },
16
+ {
17
+ "name": "FLEURS",
18
+ "author": "Meta",
19
+ "url": "https://huggingface.co/datasets/google/fleurs",
20
+ "n_languages": 102,
21
+ "tasks": [
22
+ "speech_recognition"
23
+ ],
24
+ "parallel": true,
25
+ "base": "FLORES",
26
+ "implemented": true
27
+ },
28
+ {
29
+ "name": "CommonVoice",
30
+ "author": "Mozilla",
31
+ "url": "https://huggingface.co/datasets/mozilla-foundation/common_voice_1_0",
32
+ "n_languages": 231,
33
+ "tasks": [
34
+ "speech_recognition"
35
+ ],
36
+ "parallel": null
37
+ },
38
+ {
39
+ "name": "MMMLU",
40
+ "author": "OpenAI",
41
+ "url": "https://huggingface.co/datasets/openai/MMMLU",
42
+ "n_languages": "14",
43
+ "tasks": [
44
+ "question_answering"
45
+ ],
46
+ "parallel": true,
47
+ "base": "MMLU"
48
+ },
49
+ {
50
+ "name": "AfriMMLU",
51
+ "author": "Masakhane",
52
+ "url": "https://huggingface.co/datasets/masakhane/afrimmlu",
53
+ "n_languages": "17",
54
+ "tasks": [
55
+ "question_answering"
56
+ ],
57
+ "parallel": true,
58
+ "base": "MMLU"
59
+ },
60
+ {
61
+ "name": "Okapi MMLU",
62
+ "author": "Okapi",
63
+ "url": "https://huggingface.co/datasets/jon-tow/okapi_mmlu",
64
+ "n_languages": 16,
65
+ "tasks": [
66
+ "question_answering"
67
+ ],
68
+ "parallel": true,
69
+ "base": "MMLU"
70
+ },
71
+ {
72
+ "name": "Global MMLU",
73
+ "author": "Cohere",
74
+ "url": "https://huggingface.co/datasets/CohereForAI/Global-MMLU",
75
+ "n_languages": 42,
76
+ "tasks": [
77
+ "question_answering"
78
+ ],
79
+ "parallel": true,
80
+ "base": "MMLU"
81
+ },
82
+ {
83
+ "name": "MGSM",
84
+ "author": "Google",
85
+ "url": "https://huggingface.co/datasets/juletxara/mgsm",
86
+ "n_languages": 10,
87
+ "tasks": [
88
+ "math"
89
+ ],
90
+ "parallel": true,
91
+ "base": "MGSM"
92
+ },
93
+ {
94
+ "name": "AfriMGSM",
95
+ "author": "Masakhane",
96
+ "url": "https://huggingface.co/datasets/masakhane/afrimgsm",
97
+ "n_languages": 18,
98
+ "tasks": [
99
+ "math"
100
+ ],
101
+ "parallel": true,
102
+ "base": "MGSM"
103
+ },
104
+ {
105
+ "name": "Okapi ARC Challenge",
106
+ "author": "Okapi",
107
+ "url": "https://huggingface.co/datasets/jon-tow/okapi_arc_challenge",
108
+ "n_languages": 31,
109
+ "tasks": [
110
+ "question_answering"
111
+ ],
112
+ "parallel": true,
113
+ "base": "AI2 ARC"
114
+ },
115
+ {
116
+ "name": "Uhuru ARC Easy",
117
+ "author": "Masakhane",
118
+ "url": "https://huggingface.co/datasets/masakhane/uhura-arc-easy",
119
+ "n_languages": 6,
120
+ "tasks": [
121
+ "question_answering"
122
+ ],
123
+ "parallel": true,
124
+ "base": "AI2 ARC"
125
+ },
126
+ {
127
+ "name": "Okapi TruthfulQA",
128
+ "author": "Okapi",
129
+ "url": "https://huggingface.co/datasets/jon-tow/okapi_truthfulqa/tree/main/data",
130
+ "n_languages": 31,
131
+ "tasks": [
132
+ "question_answering"
133
+ ],
134
+ "parallel": true,
135
+ "base": "TruthfulQA"
136
+ },
137
+ {
138
+ "name": "Uhura TruthfulQA",
139
+ "author": "Masakhane",
140
+ "url": "https://huggingface.co/datasets/masakhane/uhura-truthfulqa",
141
+ "n_languages": 6,
142
+ "tasks": [
143
+ "question_answering"
144
+ ],
145
+ "parallel": true,
146
+ "base": "TruthfulQA"
147
+ },
148
+ {
149
+ "name": "XNLI",
150
+ "author": "Meta",
151
+ "url": "https://huggingface.co/datasets/facebook/xnli",
152
+ "n_languages": 14,
153
+ "tasks": [
154
+ "classification"
155
+ ],
156
+ "parallel": true,
157
+ "base": "XNLI"
158
+ },
159
+ {
160
+ "name": "AfriXNLI",
161
+ "author": "Masakhane",
162
+ "url": "https://huggingface.co/datasets/masakhane/afrixnli",
163
+ "n_languages": 18,
164
+ "tasks": [
165
+ "classification"
166
+ ],
167
+ "parallel": true,
168
+ "base": "XNLI"
169
+ },
170
+ {
171
+ "name": "Okapi HellaSwag",
172
+ "author": "Okapi",
173
+ "url": "https://huggingface.co/datasets/jon-tow/okapi_hellaswag",
174
+ "n_languages": 31,
175
+ "tasks": [
176
+ "question_answering"
177
+ ],
178
+ "parallel": true,
179
+ "base": "HellaSwag"
180
+ },
181
+ {
182
+ "name": "WikiANN / PAN-X",
183
+ "author": "Academic",
184
+ "url": "https://huggingface.co/datasets/unimelb-nlp/wikiann",
185
+ "n_languages": 176,
186
+ "tasks": [
187
+ "ner"
188
+ ],
189
+ "parallel": false
190
+ },
191
+ {
192
+ "name": "MSVAMP",
193
+ "author": "Microsoft",
194
+ "url": "https://huggingface.co/datasets/Mathoctopus/MSVAMP",
195
+ "n_languages": 10,
196
+ "tasks": [
197
+ "math"
198
+ ],
199
+ "parallel": true
200
+ },
201
+ {
202
+ "name": "XLSUM",
203
+ "author": "Academic",
204
+ "url": "https://huggingface.co/datasets/csebuetnlp/xlsum",
205
+ "n_languages": 45,
206
+ "tasks": [
207
+ "summarization"
208
+ ],
209
+ "parallel": true
210
+ },
211
+ {
212
+ "name": "SEA-IFEVAL",
213
+ "author": "AI Singapore",
214
+ "url": "https://huggingface.co/datasets/aisingapore/instruction_following-ifeval",
215
+ "n_languages": 7,
216
+ "tasks": [
217
+ "instruction_following"
218
+ ],
219
+ "parallel": true,
220
+ "base": "IFEVAL"
221
+ },
222
+ {
223
+ "name": "XTREME",
224
+ "author": "Google",
225
+ "url": "https://huggingface.co/datasets/google/xtreme",
226
+ "n_languages": 40,
227
+ "tasks": [
228
+ "translation",
229
+ "classification",
230
+ "question_answering",
231
+ "ner"
232
+ ],
233
+ "parallel": null
234
+ },
235
+ {
236
+ "name": "XGLUE",
237
+ "author": "Microsoft",
238
+ "url": "https://huggingface.co/datasets/microsoft/xglue",
239
+ "n_languages": 18,
240
+ "tasks": [
241
+ "pos"
242
+ ],
243
+ "parallel": null,
244
+ "base": "GLUE"
245
+ },
246
+ {
247
+ "name": "IndicGLUE",
248
+ "author": "AI4Bharat",
249
+ "url": "https://huggingface.co/datasets/ai4bharat/indic_glue",
250
+ "n_languages": 11,
251
+ "tasks": [
252
+ "question_answering"
253
+ ],
254
+ "parallel": null,
255
+ "base": "GLUE"
256
+ },
257
+ {
258
+ "name": "Opus Gnome",
259
+ "author": "Helsinki NLP",
260
+ "url": "https://huggingface.co/datasets/Helsinki-NLP/opus_gnome",
261
+ "n_languages": 187,
262
+ "tasks": [
263
+ "translation"
264
+ ],
265
+ "parallel": true
266
+ },
267
+ {
268
+ "name": "Opus Paracrawl",
269
+ "author": "Helsinki NLP",
270
+ "url": "https://huggingface.co/datasets/Helsinki-NLP/opus_paracrawl",
271
+ "n_languages": 43,
272
+ "tasks": [
273
+ "translation"
274
+ ],
275
+ "parallel": false
276
+ },
277
+ {
278
+ "name": "CCAligned",
279
+ "author": "Meta",
280
+ "url": "https://huggingface.co/datasets/ahelk/ccaligned_multilingual",
281
+ "n_languages": 137,
282
+ "tasks": [
283
+ "translation"
284
+ ],
285
+ "parallel": false
286
+ },
287
+ {
288
+ "name": "OPUS Collection",
289
+ "author": "Helsinki NLP",
290
+ "url": "https://opus.nlpl.eu/",
291
+ "n_languages": 747,
292
+ "tasks": [
293
+ "translation"
294
+ ],
295
+ "parallel": false
296
+ },
297
+ {
298
+ "name": "MasakhaNER",
299
+ "author": "Masakhane",
300
+ "url": "https://huggingface.co/datasets/masakhane/masakhaner",
301
+ "n_languages": 10,
302
+ "tasks": [
303
+ "ner"
304
+ ],
305
+ "parallel": null
306
+ },
307
+ {
308
+ "name": "Multilingual Sentiments",
309
+ "url": "https://huggingface.co/datasets/tyqiangz/multilingual-sentiments",
310
+ "n_languages": 12,
311
+ "tasks": [
312
+ "sentiment_analysis"
313
+ ],
314
+ "parallel": null
315
+ },
316
+ {
317
+ "name": "CulturaX",
318
+ "author": "Academic",
319
+ "url": "https://huggingface.co/datasets/uonlp/CulturaX",
320
+ "n_languages": 167,
321
+ "tasks": [
322
+ "language_modeling"
323
+ ],
324
+ "parallel": false
325
+ },
326
+ {
327
+ "name": "T\u00fclu 3 SFT Mixture",
328
+ "author": "AllenAI",
329
+ "url": "https://huggingface.co/datasets/allenai/tulu-3-sft-mixture",
330
+ "n_languages": 70,
331
+ "tasks": [
332
+ "instruction_following"
333
+ ],
334
+ "parallel": false
335
+ },
336
+ {
337
+ "name": "xP3",
338
+ "author": "BigScience",
339
+ "url": "https://huggingface.co/datasets/bigscience/xP3",
340
+ "n_languages": 46,
341
+ "tasks": [
342
+ "instruction_following"
343
+ ],
344
+ "parallel": false
345
+ },
346
+ {
347
+ "name": "Aya",
348
+ "author": "Cohere",
349
+ "url": "https://huggingface.co/datasets/CohereForAI/aya_dataset",
350
+ "n_languages": 65,
351
+ "tasks": [
352
+ "instruction_following"
353
+ ],
354
+ "parallel": null
355
+ },
356
+ {
357
+ "name": "Lanfrica",
358
+ "author": "Lanfrica",
359
+ "url": "https://lanfrica.com/records?language=yor&task=machine%20translation",
360
+ "n_languages": 2200,
361
+ "tasks": [
362
+ "datasets"
363
+ ],
364
+ "parallel": null
365
+ },
366
+ {
367
+ "name": "HuggingFace Languages",
368
+ "author": "HuggingFace",
369
+ "url": "https://huggingface.co/languages",
370
+ "n_languages": 4680,
371
+ "tasks": [
372
+ "datasets",
373
+ "models"
374
+ ],
375
+ "parallel": null
376
+ },
377
+ {
378
+ "name": "HuggingFace Multilingual Datasets",
379
+ "author": "HuggingFace",
380
+ "url": "https://huggingface.co/datasets?other=multilinguality:multilingual",
381
+ "n_languages": null,
382
+ "tasks": [
383
+ "datasets"
384
+ ],
385
+ "parallel": false
386
+ }
387
+ ]
evals/main.py CHANGED
@@ -108,7 +108,6 @@ def make_language_table(df):
108
  df = df[["language_name", "speakers", "family", "average", "in_benchmark", *task_metrics]]
109
  return df
110
 
111
-
112
  async def main():
113
  results = await evaluate()
114
  results, lang_results, model_results, task_results = aggregate(results)
@@ -121,9 +120,11 @@ async def main():
121
  with open("results.json", "w") as f:
122
  json.dump(all_results, f, indent=2, ensure_ascii=False)
123
 
 
124
  all_tables = {
125
  "model_table": serialize(make_model_table(model_results)),
126
  "language_table": serialize(make_language_table(lang_results)),
 
127
  }
128
  with open("frontend/public/results.json", "w") as f:
129
  json.dump(all_tables, f, indent=2, ensure_ascii=False)
 
108
  df = df[["language_name", "speakers", "family", "average", "in_benchmark", *task_metrics]]
109
  return df
110
 
 
111
  async def main():
112
  results = await evaluate()
113
  results, lang_results, model_results, task_results = aggregate(results)
 
120
  with open("results.json", "w") as f:
121
  json.dump(all_results, f, indent=2, ensure_ascii=False)
122
 
123
+ datasets_df = pd.read_json("data/datasets.json")
124
  all_tables = {
125
  "model_table": serialize(make_model_table(model_results)),
126
  "language_table": serialize(make_language_table(lang_results)),
127
+ "dataset_table": serialize(datasets_df),
128
  }
129
  with open("frontend/public/results.json", "w") as f:
130
  json.dump(all_tables, f, indent=2, ensure_ascii=False)
frontend/public/results.json CHANGED
@@ -8318,5 +8318,445 @@
8318
  "translation_bleu": 0.0,
8319
  "translation_chrf": 0.0
8320
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8321
  ]
8322
  }
 
8318
  "translation_bleu": 0.0,
8319
  "translation_chrf": 0.0
8320
  }
8321
+ ],
8322
+ "dataset_table": [
8323
+ {
8324
+ "name": "FLORES+",
8325
+ "author": "Meta",
8326
+ "url": "https://huggingface.co/datasets/openlanguagedata/flores_plus",
8327
+ "n_languages": 200.0,
8328
+ "tasks": [
8329
+ "translation",
8330
+ "classification",
8331
+ "language_modeling"
8332
+ ],
8333
+ "parallel": 1.0,
8334
+ "base": "FLORES",
8335
+ "implemented": 1.0
8336
+ },
8337
+ {
8338
+ "name": "FLEURS",
8339
+ "author": "Meta",
8340
+ "url": "https://huggingface.co/datasets/google/fleurs",
8341
+ "n_languages": 102.0,
8342
+ "tasks": [
8343
+ "speech_recognition"
8344
+ ],
8345
+ "parallel": 1.0,
8346
+ "base": "FLORES",
8347
+ "implemented": 1.0
8348
+ },
8349
+ {
8350
+ "name": "CommonVoice",
8351
+ "author": "Mozilla",
8352
+ "url": "https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0",
8353
+ "n_languages": 124.0,
8354
+ "tasks": [
8355
+ "speech_recognition"
8356
+ ],
8357
+ "parallel": null,
8358
+ "base": null,
8359
+ "implemented": null
8360
+ },
8361
+ {
8362
+ "name": "MMMLU",
8363
+ "author": "OpenAI",
8364
+ "url": "https://huggingface.co/datasets/openai/MMMLU",
8365
+ "n_languages": 14.0,
8366
+ "tasks": [
8367
+ "question_answering"
8368
+ ],
8369
+ "parallel": 1.0,
8370
+ "base": "MMLU",
8371
+ "implemented": null
8372
+ },
8373
+ {
8374
+ "name": "AfriMMLU",
8375
+ "author": "Masakhane",
8376
+ "url": "https://huggingface.co/datasets/masakhane/afrimmlu",
8377
+ "n_languages": 17.0,
8378
+ "tasks": [
8379
+ "question_answering"
8380
+ ],
8381
+ "parallel": 1.0,
8382
+ "base": "MMLU",
8383
+ "implemented": null
8384
+ },
8385
+ {
8386
+ "name": "Okapi MMLU",
8387
+ "author": "Okapi",
8388
+ "url": "https://huggingface.co/datasets/jon-tow/okapi_mmlu",
8389
+ "n_languages": 16.0,
8390
+ "tasks": [
8391
+ "question_answering"
8392
+ ],
8393
+ "parallel": 1.0,
8394
+ "base": "MMLU",
8395
+ "implemented": null
8396
+ },
8397
+ {
8398
+ "name": "Global MMLU",
8399
+ "author": "Cohere",
8400
+ "url": "https://huggingface.co/datasets/CohereForAI/Global-MMLU",
8401
+ "n_languages": 42.0,
8402
+ "tasks": [
8403
+ "question_answering"
8404
+ ],
8405
+ "parallel": 1.0,
8406
+ "base": "MMLU",
8407
+ "implemented": null
8408
+ },
8409
+ {
8410
+ "name": "MGSM",
8411
+ "author": "Google",
8412
+ "url": "https://huggingface.co/datasets/juletxara/mgsm",
8413
+ "n_languages": 10.0,
8414
+ "tasks": [
8415
+ "math"
8416
+ ],
8417
+ "parallel": 1.0,
8418
+ "base": "MGSM",
8419
+ "implemented": null
8420
+ },
8421
+ {
8422
+ "name": "AfriMGSM",
8423
+ "author": "Masakhane",
8424
+ "url": "https://huggingface.co/datasets/masakhane/afrimgsm",
8425
+ "n_languages": 18.0,
8426
+ "tasks": [
8427
+ "math"
8428
+ ],
8429
+ "parallel": 1.0,
8430
+ "base": "MGSM",
8431
+ "implemented": null
8432
+ },
8433
+ {
8434
+ "name": "Okapi ARC Challenge",
8435
+ "author": "Okapi",
8436
+ "url": "https://huggingface.co/datasets/jon-tow/okapi_arc_challenge",
8437
+ "n_languages": 31.0,
8438
+ "tasks": [
8439
+ "question_answering"
8440
+ ],
8441
+ "parallel": 1.0,
8442
+ "base": "AI2 ARC",
8443
+ "implemented": null
8444
+ },
8445
+ {
8446
+ "name": "Uhuru ARC Easy",
8447
+ "author": "Masakhane",
8448
+ "url": "https://huggingface.co/datasets/masakhane/uhura-arc-easy",
8449
+ "n_languages": 6.0,
8450
+ "tasks": [
8451
+ "question_answering"
8452
+ ],
8453
+ "parallel": 1.0,
8454
+ "base": "AI2 ARC",
8455
+ "implemented": null
8456
+ },
8457
+ {
8458
+ "name": "Okapi TruthfulQA",
8459
+ "author": "Okapi",
8460
+ "url": "https://huggingface.co/datasets/jon-tow/okapi_truthfulqa/tree/main/data",
8461
+ "n_languages": 31.0,
8462
+ "tasks": [
8463
+ "question_answering"
8464
+ ],
8465
+ "parallel": 1.0,
8466
+ "base": "TruthfulQA",
8467
+ "implemented": null
8468
+ },
8469
+ {
8470
+ "name": "Uhura TruthfulQA",
8471
+ "author": "Masakhane",
8472
+ "url": "https://huggingface.co/datasets/masakhane/uhura-truthfulqa",
8473
+ "n_languages": 6.0,
8474
+ "tasks": [
8475
+ "question_answering"
8476
+ ],
8477
+ "parallel": 1.0,
8478
+ "base": "TruthfulQA",
8479
+ "implemented": null
8480
+ },
8481
+ {
8482
+ "name": "XNLI",
8483
+ "author": "Meta",
8484
+ "url": "https://huggingface.co/datasets/facebook/xnli",
8485
+ "n_languages": 14.0,
8486
+ "tasks": [
8487
+ "classification"
8488
+ ],
8489
+ "parallel": 1.0,
8490
+ "base": "XNLI",
8491
+ "implemented": null
8492
+ },
8493
+ {
8494
+ "name": "AfriXNLI",
8495
+ "author": "Masakhane",
8496
+ "url": "https://huggingface.co/datasets/masakhane/afrixnli",
8497
+ "n_languages": 18.0,
8498
+ "tasks": [
8499
+ "classification"
8500
+ ],
8501
+ "parallel": 1.0,
8502
+ "base": "XNLI",
8503
+ "implemented": null
8504
+ },
8505
+ {
8506
+ "name": "Okapi HellaSwag",
8507
+ "author": "Okapi",
8508
+ "url": "https://huggingface.co/datasets/jon-tow/okapi_hellaswag",
8509
+ "n_languages": 31.0,
8510
+ "tasks": [
8511
+ "question_answering"
8512
+ ],
8513
+ "parallel": 1.0,
8514
+ "base": "HellaSwag",
8515
+ "implemented": null
8516
+ },
8517
+ {
8518
+ "name": "WikiANN / PAN-X",
8519
+ "author": "Academic",
8520
+ "url": "https://huggingface.co/datasets/unimelb-nlp/wikiann",
8521
+ "n_languages": 176.0,
8522
+ "tasks": [
8523
+ "ner"
8524
+ ],
8525
+ "parallel": 0.0,
8526
+ "base": null,
8527
+ "implemented": null
8528
+ },
8529
+ {
8530
+ "name": "MSVAMP",
8531
+ "author": "Microsoft",
8532
+ "url": "https://huggingface.co/datasets/Mathoctopus/MSVAMP",
8533
+ "n_languages": 10.0,
8534
+ "tasks": [
8535
+ "math"
8536
+ ],
8537
+ "parallel": 1.0,
8538
+ "base": null,
8539
+ "implemented": null
8540
+ },
8541
+ {
8542
+ "name": "XLSUM",
8543
+ "author": "Academic",
8544
+ "url": "https://huggingface.co/datasets/csebuetnlp/xlsum",
8545
+ "n_languages": 45.0,
8546
+ "tasks": [
8547
+ "summarization"
8548
+ ],
8549
+ "parallel": 1.0,
8550
+ "base": null,
8551
+ "implemented": null
8552
+ },
8553
+ {
8554
+ "name": "SEA-IFEVAL",
8555
+ "author": "AI Singapore",
8556
+ "url": "https://huggingface.co/datasets/aisingapore/instruction_following-ifeval",
8557
+ "n_languages": 7.0,
8558
+ "tasks": [
8559
+ "instruction_following"
8560
+ ],
8561
+ "parallel": 1.0,
8562
+ "base": "IFEVAL",
8563
+ "implemented": null
8564
+ },
8565
+ {
8566
+ "name": "XTREME",
8567
+ "author": "Google",
8568
+ "url": "https://huggingface.co/datasets/google/xtreme",
8569
+ "n_languages": 40.0,
8570
+ "tasks": [
8571
+ "translation",
8572
+ "classification",
8573
+ "question_answering",
8574
+ "ner"
8575
+ ],
8576
+ "parallel": null,
8577
+ "base": null,
8578
+ "implemented": null
8579
+ },
8580
+ {
8581
+ "name": "XGLUE",
8582
+ "author": "Microsoft",
8583
+ "url": "https://huggingface.co/datasets/microsoft/xglue",
8584
+ "n_languages": 18.0,
8585
+ "tasks": [
8586
+ "pos"
8587
+ ],
8588
+ "parallel": null,
8589
+ "base": "GLUE",
8590
+ "implemented": null
8591
+ },
8592
+ {
8593
+ "name": "IndicGLUE",
8594
+ "author": "AI4Bharat",
8595
+ "url": "https://huggingface.co/datasets/ai4bharat/indic_glue",
8596
+ "n_languages": 11.0,
8597
+ "tasks": [
8598
+ "question_answering"
8599
+ ],
8600
+ "parallel": null,
8601
+ "base": "GLUE",
8602
+ "implemented": null
8603
+ },
8604
+ {
8605
+ "name": "Opus Gnome",
8606
+ "author": "Helsinki NLP",
8607
+ "url": "https://huggingface.co/datasets/Helsinki-NLP/opus_gnome",
8608
+ "n_languages": 187.0,
8609
+ "tasks": [
8610
+ "translation"
8611
+ ],
8612
+ "parallel": 1.0,
8613
+ "base": null,
8614
+ "implemented": null
8615
+ },
8616
+ {
8617
+ "name": "Opus Paracrawl",
8618
+ "author": "Helsinki NLP",
8619
+ "url": "https://huggingface.co/datasets/Helsinki-NLP/opus_paracrawl",
8620
+ "n_languages": 43.0,
8621
+ "tasks": [
8622
+ "translation"
8623
+ ],
8624
+ "parallel": 0.0,
8625
+ "base": null,
8626
+ "implemented": null
8627
+ },
8628
+ {
8629
+ "name": "CCAligned",
8630
+ "author": "Meta",
8631
+ "url": "https://huggingface.co/datasets/ahelk/ccaligned_multilingual",
8632
+ "n_languages": 137.0,
8633
+ "tasks": [
8634
+ "translation"
8635
+ ],
8636
+ "parallel": 0.0,
8637
+ "base": null,
8638
+ "implemented": null
8639
+ },
8640
+ {
8641
+ "name": "OPUS Collection",
8642
+ "author": "Helsinki NLP",
8643
+ "url": "https://opus.nlpl.eu/",
8644
+ "n_languages": 747.0,
8645
+ "tasks": [
8646
+ "translation"
8647
+ ],
8648
+ "parallel": 0.0,
8649
+ "base": null,
8650
+ "implemented": null
8651
+ },
8652
+ {
8653
+ "name": "MasakhaNER",
8654
+ "author": "Masakhane",
8655
+ "url": "https://huggingface.co/datasets/masakhane/masakhaner",
8656
+ "n_languages": 10.0,
8657
+ "tasks": [
8658
+ "ner"
8659
+ ],
8660
+ "parallel": null,
8661
+ "base": null,
8662
+ "implemented": null
8663
+ },
8664
+ {
8665
+ "name": "Multilingual Sentiments",
8666
+ "author": null,
8667
+ "url": "https://huggingface.co/datasets/tyqiangz/multilingual-sentiments",
8668
+ "n_languages": 12.0,
8669
+ "tasks": [
8670
+ "sentiment_analysis"
8671
+ ],
8672
+ "parallel": null,
8673
+ "base": null,
8674
+ "implemented": null
8675
+ },
8676
+ {
8677
+ "name": "CulturaX",
8678
+ "author": "Academic",
8679
+ "url": "https://huggingface.co/datasets/uonlp/CulturaX",
8680
+ "n_languages": 167.0,
8681
+ "tasks": [
8682
+ "language_modeling"
8683
+ ],
8684
+ "parallel": 0.0,
8685
+ "base": null,
8686
+ "implemented": null
8687
+ },
8688
+ {
8689
+ "name": "Tülu 3 SFT Mixture",
8690
+ "author": "AllenAI",
8691
+ "url": "https://huggingface.co/datasets/allenai/tulu-3-sft-mixture",
8692
+ "n_languages": 70.0,
8693
+ "tasks": [
8694
+ "instruction_following"
8695
+ ],
8696
+ "parallel": 0.0,
8697
+ "base": null,
8698
+ "implemented": null
8699
+ },
8700
+ {
8701
+ "name": "xP3",
8702
+ "author": "BigScience",
8703
+ "url": "https://huggingface.co/datasets/bigscience/xP3",
8704
+ "n_languages": 46.0,
8705
+ "tasks": [
8706
+ "instruction_following"
8707
+ ],
8708
+ "parallel": 0.0,
8709
+ "base": null,
8710
+ "implemented": null
8711
+ },
8712
+ {
8713
+ "name": "Aya",
8714
+ "author": "Cohere",
8715
+ "url": "https://huggingface.co/datasets/CohereForAI/aya_dataset",
8716
+ "n_languages": 65.0,
8717
+ "tasks": [
8718
+ "instruction_following"
8719
+ ],
8720
+ "parallel": null,
8721
+ "base": null,
8722
+ "implemented": null
8723
+ },
8724
+ {
8725
+ "name": "Lanfrica",
8726
+ "author": "Lanfrica",
8727
+ "url": "https://lanfrica.com/records?language=yor&task=machine%20translation",
8728
+ "n_languages": 2200.0,
8729
+ "tasks": [
8730
+ "datasets"
8731
+ ],
8732
+ "parallel": null,
8733
+ "base": null,
8734
+ "implemented": null
8735
+ },
8736
+ {
8737
+ "name": "HuggingFace Languages",
8738
+ "author": "HuggingFace",
8739
+ "url": "https://huggingface.co/languages",
8740
+ "n_languages": 4680.0,
8741
+ "tasks": [
8742
+ "datasets",
8743
+ "models"
8744
+ ],
8745
+ "parallel": null,
8746
+ "base": null,
8747
+ "implemented": null
8748
+ },
8749
+ {
8750
+ "name": "HuggingFace Multilingual Datasets",
8751
+ "author": "HuggingFace",
8752
+ "url": "https://huggingface.co/datasets?other=multilinguality:multilingual",
8753
+ "n_languages": null,
8754
+ "tasks": [
8755
+ "datasets"
8756
+ ],
8757
+ "parallel": 0.0,
8758
+ "base": null,
8759
+ "implemented": null
8760
+ }
8761
  ]
8762
  }
frontend/src/App.css CHANGED
@@ -37,3 +37,7 @@ p {
37
  color: #555;
38
  margin-top: 0;
39
  }
 
 
 
 
 
37
  color: #555;
38
  margin-top: 0;
39
  }
40
+
41
+ * {
42
+ font-size: 10pt;
43
+ }
frontend/src/App.js CHANGED
@@ -4,7 +4,7 @@ import { PrimeReactProvider } from 'primereact/api'
4
  import 'primereact/resources/themes/lara-light-cyan/theme.css'
5
  import ModelTable from './components/ModelTable'
6
  import LanguageTable from './components/LanguageTable'
7
-
8
  function App () {
9
  const [data, setData] = useState(null)
10
  const [loading, setLoading] = useState(true)
@@ -48,9 +48,12 @@ function App () {
48
  {loading && <p>...</p>}
49
  {error && <p>Error: {error}</p>}
50
  {data && (
51
- <div style={{ display: 'flex', flexDirection: 'row', gap: '2rem' }}>
52
- <ModelTable data={data} />
53
- <LanguageTable data={data} />
 
 
 
54
  </div>
55
  )}
56
  </PrimeReactProvider>
 
4
  import 'primereact/resources/themes/lara-light-cyan/theme.css'
5
  import ModelTable from './components/ModelTable'
6
  import LanguageTable from './components/LanguageTable'
7
+ import DatasetTable from './components/DatasetTable'
8
  function App () {
9
  const [data, setData] = useState(null)
10
  const [loading, setLoading] = useState(true)
 
48
  {loading && <p>...</p>}
49
  {error && <p>Error: {error}</p>}
50
  {data && (
51
+ <div style={{ display: 'flex', flexDirection: 'column', gap: '2rem', alignItems: 'center', width: '100%' }}>
52
+ <div style={{ display: 'flex', flexDirection: 'row', gap: '2rem' }}>
53
+ <ModelTable data={data} />
54
+ <LanguageTable data={data} />
55
+ </div>
56
+ <DatasetTable data={data} />
57
  </div>
58
  )}
59
  </PrimeReactProvider>
frontend/src/components/DatasetTable.js ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import { DataTable } from 'primereact/datatable'
2
+ import { Column } from 'primereact/column'
3
+ import { FilterMatchMode } from 'primereact/api'
4
+ import { useState } from 'react'
5
+
6
+ const DatasetTable = ({ data }) => {
7
+ const [filters, setFilters] = useState({
8
+ name: { value: null, matchMode: FilterMatchMode.CONTAINS },
9
+ author: { value: null, matchMode: FilterMatchMode.IN },
10
+ n_languages: { value: null, matchMode: FilterMatchMode.BETWEEN },
11
+ tasks: { value: null, matchMode: FilterMatchMode.IN },
12
+ parallel: { value: null, matchMode: FilterMatchMode.EQUALS },
13
+ base: { value: null, matchMode: FilterMatchMode.IN },
14
+ implemented: { value: null, matchMode: FilterMatchMode.EQUALS },
15
+ })
16
+ const table = data.dataset_table
17
+
18
+ const nameBodyTemplate = rowData => {
19
+ return <div style={{ fontWeight: 'bold' }}>{rowData.name}</div>
20
+ }
21
+
22
+
23
+ return (
24
+ <DataTable
25
+ value={table}
26
+ header={<>Datasets</>}
27
+ removableSort
28
+ filters={filters}
29
+ filterDisplay='menu'
30
+ scrollable
31
+ scrollHeight='500px'
32
+ style={{ minWidth: '200px', width: "50%" }}
33
+ >
34
+ {/* <Column
35
+ field='implemented'
36
+ header='Implemented'
37
+ filter
38
+ style={{ minWidth: '5rem' }}
39
+ /> */}
40
+ <Column
41
+ field='author'
42
+ header='Author'
43
+ filter
44
+ showFilterMatchModes={false}
45
+ style={{ minWidth: '5rem' }}
46
+ />
47
+ <Column
48
+ field='name'
49
+ header='Name'
50
+ body={nameBodyTemplate}
51
+ filter
52
+ style={{ minWidth: '5rem' }}
53
+ frozen
54
+ />
55
+ <Column
56
+ field='tasks'
57
+ header='Tasks'
58
+ filter
59
+ style={{ minWidth: '5rem', maxWidth: '10rem' }}
60
+ />
61
+ <Column
62
+ field='n_languages'
63
+ header='#Languages'
64
+ filter
65
+ sortable
66
+ style={{ minWidth: '10rem' }}
67
+ />
68
+ </DataTable>
69
+ )
70
+ }
71
+
72
+ export default DatasetTable
frontend/src/components/LanguageTable.js CHANGED
@@ -157,7 +157,7 @@ const LanguageTable = ({ data }) => {
157
  field='average'
158
  header='Average'
159
  sortable
160
- body={scoreBodyTemplate('average', { minScore: 0.4, maxScore: 0.8 })}
161
  style={{ minWidth: '5rem', maxWidth: '10rem' }}
162
  />
163
  <Column
@@ -165,8 +165,8 @@ const LanguageTable = ({ data }) => {
165
  header='Translation'
166
  sortable
167
  body={scoreBodyTemplate('translation_chrf', {
168
- minScore: 0.4,
169
- maxScore: 0.7
170
  })}
171
  style={{ minWidth: '5rem', maxWidth: '10rem' }}
172
  />
@@ -175,8 +175,8 @@ const LanguageTable = ({ data }) => {
175
  header='Classification'
176
  sortable
177
  body={scoreBodyTemplate('classification_accuracy', {
178
- minScore: 0.4,
179
- maxScore: 1
180
  })}
181
  style={{ minWidth: '5rem', maxWidth: '10rem' }}
182
  />
 
157
  field='average'
158
  header='Average'
159
  sortable
160
+ body={scoreBodyTemplate('average', { minScore: 0.2, maxScore: 0.5 })}
161
  style={{ minWidth: '5rem', maxWidth: '10rem' }}
162
  />
163
  <Column
 
165
  header='Translation'
166
  sortable
167
  body={scoreBodyTemplate('translation_chrf', {
168
+ minScore: 0.3,
169
+ maxScore: 0.6
170
  })}
171
  style={{ minWidth: '5rem', maxWidth: '10rem' }}
172
  />
 
175
  header='Classification'
176
  sortable
177
  body={scoreBodyTemplate('classification_accuracy', {
178
+ minScore: 0.3,
179
+ maxScore: 0.7
180
  })}
181
  style={{ minWidth: '5rem', maxWidth: '10rem' }}
182
  />