FrezzyI commited on
Commit
bc0473c
·
verified ·
1 Parent(s): acd6095

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # fashionclip_app.py
2
+ import gradio as gr
3
+ from PIL import Image
4
+ import torch
5
+ from transformers import CLIPProcessor, CLIPModel
6
+
7
+ # Lade das Modell und den Prozessor
8
+ model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip")
9
+ processor = CLIPProcessor.from_pretrained("patrickjohncyh/fashion-clip")
10
+
11
+ # Prompts für jede Merkmalsgruppe
12
+ category_prompts = ["a t-shirt", "a long-sleeved shirt", "a hoodie", "a sweatshirt", "a pullover", "a tank top"]
13
+ color_prompts = ["a red garment", "a blue garment", "a black garment", "a white garment", "a green garment", "a yellow garment", "a gray garment", "a brown garment", "a pink garment", "a purple garment"]
14
+ pattern_prompts = ["a plain shirt", "a striped shirt", "a floral shirt", "a checked shirt", "a dotted shirt", "an abstract patterned shirt"]
15
+ fit_prompts = ["a slim fit shirt", "an oversized top", "a regular fit shirt", "a cropped shirt", "a shirt with a crew neck", "a shirt with a v-neck", "a shirt with a round neckline"]
16
+
17
+ # Hilfsfunktion: finde das passendste Prompt für eine Gruppe
18
+ def predict_best_prompt(image, prompts):
19
+ print(f"[DEBUG] Image type: {type(image)}, Prompt count: {len(prompts)}")
20
+ inputs = processor(text=prompts, images=[image], return_tensors="pt", padding=True)
21
+ with torch.no_grad():
22
+ outputs = model(**inputs)
23
+ logits_per_image = outputs.logits_per_image
24
+ probs = logits_per_image.softmax(dim=1).squeeze().tolist()
25
+ best_idx = torch.tensor(probs).argmax().item()
26
+ return prompts[best_idx], probs[best_idx]
27
+
28
+ # Hauptfunktion für die App
29
+ def analyze_image(image):
30
+ if image is None:
31
+ return "⚠️ Please upload or take a picture first."
32
+
33
+ results = {}
34
+ results["Category"], cat_score = predict_best_prompt(image, category_prompts)
35
+ results["Color"], color_score = predict_best_prompt(image, color_prompts)
36
+ results["Pattern"], pattern_score = predict_best_prompt(image, pattern_prompts)
37
+ results["Fit"], fit_score = predict_best_prompt(image, fit_prompts)
38
+
39
+ return f"""
40
+ Category: {results['Category']} ({cat_score:.2f})\n
41
+ Color: {results['Color']} ({color_score:.2f})\n
42
+ Pattern: {results['Pattern']} ({pattern_score:.2f})\n
43
+ Fit: {results['Fit']} ({fit_score:.2f})
44
+ """
45
+
46
+ # Gradio UI erstellen
47
+ iface = gr.Interface(
48
+ fn=analyze_image,
49
+ inputs=gr.Image(type="pil", label="Upload or take a picture", sources=["upload", "webcam"]),
50
+ outputs="text",
51
+ title="Fashion Attribute Predictor (Prototype 2)",
52
+ description="Upload or capture an image of a t-shirt or pullover. The model predicts category, color, pattern, and fit using FashionCLIP."
53
+ )
54
+
55
+ # App starten
56
+ if __name__ == "__main__":
57
+ iface.launch()