Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,921 Bytes
67ae540 6bcd1bb 2ba0a0c 5762ea1 6bcd1bb 67ae540 6bcd1bb 53c6808 6bcd1bb 5762ea1 6bcd1bb 5be3d23 6bcd1bb 5762ea1 6bcd1bb 5762ea1 6bcd1bb 5762ea1 5be3d23 5762ea1 5be3d23 5762ea1 5be3d23 6bcd1bb 5762ea1 6bcd1bb 5762ea1 6bcd1bb 67ae540 6bcd1bb 5762ea1 53c6808 5762ea1 6bcd1bb 5762ea1 6bcd1bb 5762ea1 6bcd1bb 5762ea1 6bcd1bb 5762ea1 67ae540 6bcd1bb 67ae540 efd5003 5762ea1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# import gradio as gr
# from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
# from threading import Thread
# from qwen_vl_utils import process_vision_info
# import torch
# import time
# # Check if a GPU is available
# device = "cuda" if torch.cuda.is_available() else "cpu"
# local_path = "Fancy-MLLM/R1-OneVision-7B"
# # Load the model on the appropriate device (GPU if available, otherwise CPU)
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
# local_path, torch_dtype="auto", device_map=device
# )
# processor = AutoProcessor.from_pretrained(local_path)
# def generate_output(image, text, button_click):
# # Prepare input data
# messages = [
# {
# "role": "user",
# "content": [
# {"type": "image", "image": image, 'min_pixels': 1003520, 'max_pixels': 12845056},
# {"type": "text", "text": text},
# ],
# }
# ]
# # Prepare inputs for the model
# text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# image_inputs, video_inputs = process_vision_info(messages)
# inputs = processor(
# text=[text_input],
# images=image_inputs,
# videos=video_inputs,
# padding=True,
# return_tensors="pt",
# )
# # Move inputs to the same device as the model
# inputs = inputs.to(model.device)
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
# generation_kwargs = dict(
# **inputs,
# streamer=streamer,
# max_new_tokens=4096,
# top_p=0.001,
# top_k=1,
# temperature=0.01,
# repetition_penalty=1.0,
# )
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
# thread.start()
# generated_text = ''
# try:
# for new_text in streamer:
# generated_text += new_text
# yield f"β{generated_text}"
# except Exception as e:
# print(f"Error: {e}")
# yield f"Error occurred: {str(e)}"
# Css = """
# #output-markdown {
# overflow-y: auto;
# white-space: pre-wrap;
# word-wrap: break-word;
# }
# #output-markdown .math {
# overflow-x: auto;
# max-width: 100%;
# }
# .markdown-text {
# white-space: pre-wrap;
# word-wrap: break-word;
# }
# .markdown-output {
# min-height: 20vh;
# max-width: 100%;
# overflow-y: auto;
# }
# #qwen-md .katex-display { display: inline; }
# #qwen-md .katex-display>.katex { display: inline; }
# #qwen-md .katex-display>.katex>.katex-html { display: inline; }
# """
# with gr.Blocks(css=Css) as demo:
# gr.HTML("""<center><font size=8>π¦ R1-OneVision Demo</center>""")
# with gr.Row():
# with gr.Column():
# input_image = gr.Image(type="pil", label="Upload") # **ζΉε PIL ε€η**
# input_text = gr.Textbox(label="Input your question")
# with gr.Row():
# clear_btn = gr.ClearButton([input_image, input_text])
# submit_btn = gr.Button("Submit", variant="primary")
# with gr.Column():
# output_text = gr.Markdown(elem_id="qwen-md", container=True, elem_classes="markdown-output")
# submit_btn.click(fn=generate_output, inputs=[input_image, input_text], outputs=output_text)
# demo.launch(share=False)
# import gradio as gr
# from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
# from transformers.image_utils import load_image
# from threading import Thread
# import time
# import torch
# import spaces
# MODEL_ID = "Fancy-MLLM/R1-OneVision-7B"
# processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
# MODEL_ID,
# trust_remote_code=True,
# torch_dtype=torch.bfloat16
# ).to("cuda").eval()
# @spaces.GPU(duration=200)
# def model_inference(input_dict, history):
# text = input_dict["text"]
# files = input_dict["files"]
# # Load images if provided
# if len(files) > 1:
# images = [load_image(image) for image in files]
# elif len(files) == 1:
# images = [load_image(files[0])]
# else:
# images = []
# # Validate input
# if text == "" and not images:
# gr.Error("Please input a query and optionally image(s).")
# return
# if text == "" and images:
# gr.Error("Please input a text query along with the image(s).")
# return
# # Prepare messages for the model
# messages = [
# {
# "role": "user",
# "content": [
# *[{"type": "image", "image": image} for image in images],
# {"type": "text", "text": text},
# ],
# }
# ]
# # Apply chat template and process inputs
# prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# inputs = processor(
# text=[prompt],
# images=images if images else None,
# return_tensors="pt",
# padding=True,
# ).to("cuda")
# # # Set up streamer for real-time output
# # streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
# # generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
# # # Start generation in a separate thread
# # thread = Thread(target=model.generate, kwargs=generation_kwargs)
# # thread.start()
# # # Stream the output
# # buffer = ""
# # yield "Thinking..."
# # for new_text in streamer:
# # buffer += new_text
# # time.sleep(0.01)
# # yield buffer
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
# generation_kwargs = dict(
# **inputs,
# streamer=streamer,
# max_new_tokens=2048,
# top_p=0.001,
# top_k=1,
# temperature=0.01,
# repetition_penalty=1.0,
# )
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
# thread.start()
# generated_text = ''
# try:
# for new_text in streamer:
# generated_text += new_text
# yield generated_text
# except Exception as e:
# print(f"Error: {e}")
# yield f"Error occurred: {str(e)}"
# examples = [
# [{"text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?", "files": ["5.jpg"]}]
# ]
# demo = gr.ChatInterface(
# fn=model_inference,
# description="# **π¦ Fancy-MLLM/R1-OneVision-7B**",
# examples=examples,
# textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
# stop_btn="Stop Generation",
# multimodal=True,
# cache_examples=False,
# )
# demo.launch(debug=True)
import os
from datetime import datetime
import time
from threading import Thread
# Third-party imports
import numpy as np
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer
)
# Local imports
from qwen_vl_utils import process_vision_info
# Set device agnostic code
if torch.cuda.is_available():
device = "cuda"
elif (torch.backends.mps.is_available()) and (torch.backends.mps.is_built()):
device = "mps"
else:
device = "cpu"
print(f"[INFO] Using device: {device}")
def array_to_image_path(image_array):
if image_array is None:
raise ValueError("No image provided. Please upload an image before submitting.")
# Convert numpy array to PIL Image
img = Image.fromarray(np.uint8(image_array))
# Generate a unique filename using timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
# Save the image
img.save(filename)
# Get the full path of the saved image
full_path = os.path.abspath(filename)
return full_path
models = {
"Fancy-MLLM/R1-OneVision-7B": Qwen2_5_VLForConditionalGeneration.from_pretrained("Fancy-MLLM/R1-OneVision-7B",
trust_remote_code=True,
torch_dtype="auto",
device_map="auto").eval(),
}
processors = {
"Fancy-MLLM/R1-OneVision-7B": AutoProcessor.from_pretrained("Fancy-MLLM/R1-OneVision-7B", trust_remote_code=True),
}
DESCRIPTION = "[π¦ Fancy-MLLM/R1-OneVision-7B Demo]"
kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"]
files = input_dict["files"]
# Load images if provided
images = []
if len(files) > 0:
images = [array_to_image_path(image) for image in files]
# Validate input
if text == "" and not images:
yield "Error: Please input a query and optionally image(s)."
return
if text == "" and images:
yield "Error: Please input a text query along with the image(s)."
return
# Prepare messages for the model
messages = [
{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}
]
# Apply chat template and process inputs
prompt = processors["Fancy-MLLM/R1-OneVision-7B"].apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processors["Fancy-MLLM/R1-OneVision-7B"](
text=[prompt],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(device)
# Set up streamer for real-time output
streamer = TextIteratorStreamer(processors["Fancy-MLLM/R1-OneVision-7B"], skip_prompt=True, skip_special_tokens=True)
# Define the generation parameters
generation_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=2048,
top_p=0.001,
top_k=1,
temperature=0.01,
repetition_penalty=1.0,
)
# Start generation in a separate thread
thread = Thread(target=models["Fancy-MLLM/R1-OneVision-7B"].generate, kwargs=generation_kwargs)
thread.start()
# Stream the output
buffer = ""
yield "Thinking..."
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="R1-OneVision-7B Input"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture", type="numpy", elem_id="image_input")
model_selector = gr.Dropdown(choices=list(models.keys()),
label="Model",
value="Fancy-MLLM/R1-OneVision-7B")
text_input = gr.Textbox(label="Text Prompt")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text", elem_id="output_text", lines=10)
submit_btn.click(model_inference, [input_img, text_input, model_selector], [output_text])
demo.queue(api_open=False)
demo.launch(debug=True)
|