File size: 11,921 Bytes
67ae540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bcd1bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ba0a0c
5762ea1
6bcd1bb
 
 
67ae540
6bcd1bb
 
53c6808
6bcd1bb
 
5762ea1
 
6bcd1bb
 
 
 
 
 
 
 
 
 
 
 
 
 
5be3d23
6bcd1bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5762ea1
6bcd1bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5762ea1
 
 
 
 
 
 
 
6bcd1bb
5762ea1
 
 
 
 
 
 
 
 
5be3d23
5762ea1
5be3d23
 
5762ea1
 
5be3d23
 
 
6bcd1bb
5762ea1
 
6bcd1bb
5762ea1
 
6bcd1bb
 
67ae540
6bcd1bb
5762ea1
 
 
 
53c6808
5762ea1
 
 
 
 
 
 
 
 
6bcd1bb
 
5762ea1
 
 
 
 
 
 
 
 
 
 
6bcd1bb
 
 
 
 
 
 
 
 
 
 
 
 
 
5762ea1
6bcd1bb
 
 
 
 
 
5762ea1
6bcd1bb
5762ea1
67ae540
6bcd1bb
67ae540
efd5003
5762ea1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# import gradio as gr
# from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
# from threading import Thread
# from qwen_vl_utils import process_vision_info
# import torch
# import time

# # Check if a GPU is available
# device = "cuda" if torch.cuda.is_available() else "cpu"

# local_path = "Fancy-MLLM/R1-OneVision-7B"

# # Load the model on the appropriate device (GPU if available, otherwise CPU)
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
#     local_path, torch_dtype="auto", device_map=device
# )
# processor = AutoProcessor.from_pretrained(local_path)

# def generate_output(image, text, button_click):
#     # Prepare input data
#     messages = [
#         {
#             "role": "user",
#             "content": [
#                 {"type": "image", "image": image, 'min_pixels': 1003520, 'max_pixels': 12845056},
#                 {"type": "text", "text": text},
#             ],
#         }
#     ]
    
#     # Prepare inputs for the model
#     text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
#     image_inputs, video_inputs = process_vision_info(messages)
#     inputs = processor(
#         text=[text_input],
#         images=image_inputs,
#         videos=video_inputs,
#         padding=True,
#         return_tensors="pt",
#     )
    
#     # Move inputs to the same device as the model
#     inputs = inputs.to(model.device)

#     streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
#     generation_kwargs = dict(
#         **inputs,
#         streamer=streamer,
#         max_new_tokens=4096,
#         top_p=0.001,
#         top_k=1,
#         temperature=0.01,
#         repetition_penalty=1.0,
#     )
    
#     thread = Thread(target=model.generate, kwargs=generation_kwargs)
#     thread.start()
#     generated_text = ''
    
#     try:
#         for new_text in streamer:
#             generated_text += new_text
#             yield f"β€Ž{generated_text}"
#     except Exception as e:
#         print(f"Error: {e}")
#         yield f"Error occurred: {str(e)}"

# Css = """
# #output-markdown {
#     overflow-y: auto;
#     white-space: pre-wrap; 
#     word-wrap: break-word;
# }
# #output-markdown .math {
#     overflow-x: auto;
#     max-width: 100%;
# }
# .markdown-text {
#     white-space: pre-wrap;
#     word-wrap: break-word;
# }
# .markdown-output {
#     min-height: 20vh;
#     max-width: 100%;
#     overflow-y: auto;
# }
# #qwen-md .katex-display { display: inline; }
# #qwen-md .katex-display>.katex { display: inline; }
# #qwen-md .katex-display>.katex>.katex-html { display: inline; }
# """

# with gr.Blocks(css=Css) as demo:
#     gr.HTML("""<center><font size=8>πŸ¦– R1-OneVision Demo</center>""")

#     with gr.Row():
#         with gr.Column():
#             input_image = gr.Image(type="pil", label="Upload")  # **ζ”Ήε›ž PIL 倄理**
#             input_text = gr.Textbox(label="Input your question")
#             with gr.Row():
#                 clear_btn = gr.ClearButton([input_image, input_text])
#                 submit_btn = gr.Button("Submit", variant="primary")

#         with gr.Column():
#             output_text = gr.Markdown(elem_id="qwen-md", container=True, elem_classes="markdown-output")

#     submit_btn.click(fn=generate_output, inputs=[input_image, input_text], outputs=output_text)

# demo.launch(share=False)


# import gradio as gr
# from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
# from transformers.image_utils import load_image
# from threading import Thread
# import time
# import torch
# import spaces

# MODEL_ID = "Fancy-MLLM/R1-OneVision-7B"
# processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
#     MODEL_ID,
#     trust_remote_code=True,
#     torch_dtype=torch.bfloat16
# ).to("cuda").eval()

# @spaces.GPU(duration=200)
# def model_inference(input_dict, history):
#     text = input_dict["text"]
#     files = input_dict["files"]

#     # Load images if provided
#     if len(files) > 1:
#         images = [load_image(image) for image in files]
#     elif len(files) == 1:
#         images = [load_image(files[0])]
#     else:
#         images = []

#     # Validate input
#     if text == "" and not images:
#         gr.Error("Please input a query and optionally image(s).")
#         return
#     if text == "" and images:
#         gr.Error("Please input a text query along with the image(s).")
#         return

#     # Prepare messages for the model
#     messages = [
#         {
#             "role": "user",
#             "content": [
#                 *[{"type": "image", "image": image} for image in images],
#                 {"type": "text", "text": text},
#             ],
#         }
#     ]

#     # Apply chat template and process inputs
#     prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
#     inputs = processor(
#         text=[prompt],
#         images=images if images else None,
#         return_tensors="pt",
#         padding=True,
#     ).to("cuda")

#     # # Set up streamer for real-time output
#     # streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
#     # generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)

#     # # Start generation in a separate thread
#     # thread = Thread(target=model.generate, kwargs=generation_kwargs)
#     # thread.start()

#     # # Stream the output
#     # buffer = ""
#     # yield "Thinking..."
#     # for new_text in streamer:
#     #     buffer += new_text
#     #     time.sleep(0.01)
#     #     yield buffer
#     streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
#     generation_kwargs = dict(
#         **inputs,
#         streamer=streamer,
#         max_new_tokens=2048,
#         top_p=0.001,
#         top_k=1,
#         temperature=0.01,
#         repetition_penalty=1.0,
#     )
    
#     thread = Thread(target=model.generate, kwargs=generation_kwargs)
#     thread.start()
#     generated_text = ''
    
#     try:
#         for new_text in streamer:
#             generated_text += new_text
#             yield generated_text
#     except Exception as e:
#         print(f"Error: {e}")
#         yield f"Error occurred: {str(e)}"

# examples = [
#     [{"text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?", "files": ["5.jpg"]}]
# ]

# demo = gr.ChatInterface(
#     fn=model_inference,
#     description="# **πŸ¦– Fancy-MLLM/R1-OneVision-7B**",
#     examples=examples,
#     textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
#     stop_btn="Stop Generation",
#     multimodal=True,
#     cache_examples=False,
# )

# demo.launch(debug=True)


import os
from datetime import datetime
import time
from threading import Thread

# Third-party imports
import numpy as np
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer
)

# Local imports
from qwen_vl_utils import process_vision_info

# Set device agnostic code
if torch.cuda.is_available():
    device = "cuda"
elif (torch.backends.mps.is_available()) and (torch.backends.mps.is_built()):
    device = "mps"
else:
    device = "cpu"

print(f"[INFO] Using device: {device}")

def array_to_image_path(image_array):
    if image_array is None:
        raise ValueError("No image provided. Please upload an image before submitting.")
    # Convert numpy array to PIL Image
    img = Image.fromarray(np.uint8(image_array))
    
    # Generate a unique filename using timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"image_{timestamp}.png"
    
    # Save the image
    img.save(filename)
    
    # Get the full path of the saved image
    full_path = os.path.abspath(filename)
    
    return full_path

models = {
    "Fancy-MLLM/R1-OneVision-7B": Qwen2_5_VLForConditionalGeneration.from_pretrained("Fancy-MLLM/R1-OneVision-7B", 
                                                                                      trust_remote_code=True, 
                                                                                      torch_dtype="auto",
                                                                                      device_map="auto").eval(),
}

processors = {
    "Fancy-MLLM/R1-OneVision-7B": AutoProcessor.from_pretrained("Fancy-MLLM/R1-OneVision-7B", trust_remote_code=True),
}

DESCRIPTION = "[πŸ¦– Fancy-MLLM/R1-OneVision-7B Demo]"

kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16

user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"

@spaces.GPU
def model_inference(input_dict, history):
    text = input_dict["text"]
    files = input_dict["files"]

    # Load images if provided
    images = []
    if len(files) > 0:
        images = [array_to_image_path(image) for image in files]
    
    # Validate input
    if text == "" and not images:
        yield "Error: Please input a query and optionally image(s)."
        return
    if text == "" and images:
        yield "Error: Please input a text query along with the image(s)."
        return

    # Prepare messages for the model
    messages = [
        {
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ],
        }
    ]
    
    # Apply chat template and process inputs
    prompt = processors["Fancy-MLLM/R1-OneVision-7B"].apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processors["Fancy-MLLM/R1-OneVision-7B"](
        text=[prompt],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(device)

    # Set up streamer for real-time output
    streamer = TextIteratorStreamer(processors["Fancy-MLLM/R1-OneVision-7B"], skip_prompt=True, skip_special_tokens=True)
    
    # Define the generation parameters
    generation_kwargs = dict(
        **inputs,
        streamer=streamer,
        max_new_tokens=2048,
        top_p=0.001,
        top_k=1,
        temperature=0.01,
        repetition_penalty=1.0,
    )

    # Start generation in a separate thread
    thread = Thread(target=models["Fancy-MLLM/R1-OneVision-7B"].generate, kwargs=generation_kwargs)
    thread.start()

    # Stream the output
    buffer = ""
    yield "Thinking..."
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

css = """
  #output {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Tab(label="R1-OneVision-7B Input"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Picture", type="numpy", elem_id="image_input")
                model_selector = gr.Dropdown(choices=list(models.keys()), 
                                             label="Model", 
                                             value="Fancy-MLLM/R1-OneVision-7B")
                text_input = gr.Textbox(label="Text Prompt")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_text = gr.Textbox(label="Output Text", elem_id="output_text", lines=10)

        submit_btn.click(model_inference, [input_img, text_input, model_selector], [output_text])

demo.queue(api_open=False)
demo.launch(debug=True)