| import spaces |
| import gradio as gr |
| from phi3_instruct_graph import MODEL_LIST, Phi3InstructGraph |
| from textwrap import dedent |
| import rapidjson |
| import spaces |
| from pyvis.network import Network |
| import networkx as nx |
| import spacy |
| from spacy import displacy |
| from spacy.tokens import Span |
| import random |
|
|
| json_example = {'nodes': [{'id': 'Aerosmith', 'type': 'organization', 'detailed_type': 'rock band'}, {'id': 'Steven Tyler', 'type': 'person', 'detailed_type': 'lead singer'}, {'id': 'vocal cord injury', 'type': 'medical condition', 'detailed_type': 'fractured larynx'}, {'id': 'retirement', 'type': 'event', 'detailed_type': 'announcement'}, {'id': 'touring', 'type': 'activity', 'detailed_type': 'musical performance'}, {'id': 'September 2023', 'type': 'date', 'detailed_type': 'specific time'}], 'edges': [{'from': 'Aerosmith', 'to': 'Steven Tyler', 'label': 'led by'}, {'from': 'Steven Tyler', 'to': 'vocal cord injury', 'label': 'suffered'}, {'from': 'vocal cord injury', 'to': 'retirement', 'label': 'caused'}, {'from': 'retirement', 'to': 'touring', 'label': 'ended'}, {'from': 'vocal cord injury', 'to': 'September 2023', 'label': 'occurred in'}]} |
|
|
| @spaces.GPU |
| def extract(text, model): |
| model = Phi3InstructGraph(model=model) |
| result = model.extract(text) |
| return rapidjson.loads(result) |
|
|
| def handle_text(text): |
| return " ".join(text.split()) |
|
|
| def get_random_color(): |
| return f"#{random.randint(0, 0xFFFFFF):06x}" |
|
|
| def get_random_light_color(): |
| |
| r = random.randint(128, 255) |
| g = random.randint(128, 255) |
| b = random.randint(128, 255) |
| return f"#{r:02x}{g:02x}{b:02x}" |
|
|
| def get_random_color(): |
| return f"#{random.randint(0, 0xFFFFFF):06x}" |
|
|
| def find_token_indices(doc, substring, text): |
| result = [] |
| start_index = text.find(substring) |
| |
| while start_index != -1: |
| end_index = start_index + len(substring) |
| start_token = None |
| end_token = None |
|
|
| for token in doc: |
| if token.idx == start_index: |
| start_token = token.i |
| if token.idx + len(token) == end_index: |
| end_token = token.i + 1 |
|
|
| if start_token is None or end_token is None: |
| print(f"Token boundaries not found for '{substring}' at index {start_index}") |
| else: |
| result.append({ |
| "start": start_token, |
| "end": end_token |
| }) |
| |
| |
| start_index = text.find(substring, end_index) |
|
|
| if not result: |
| print(f"Token boundaries not found for '{substring}'") |
|
|
| return result |
|
|
|
|
| def create_custom_entity_viz(data, full_text): |
| nlp = spacy.blank("xx") |
| doc = nlp(full_text) |
|
|
| spans = [] |
| colors = {} |
| for node in data["nodes"]: |
| |
| entity_spans = find_token_indices(doc, node["id"], full_text) |
| for dataentity in entity_spans: |
| start = dataentity["start"] |
| end = dataentity["end"] |
| |
| if start < len(doc) and end <= len(doc): |
| span = Span(doc, start, end, label=node["type"]) |
| |
| |
| spans.append(span) |
| if node["type"] not in colors: |
| colors[node["type"]] = get_random_light_color() |
|
|
| |
| |
|
|
| doc.set_ents(spans, default="unmodified") |
| doc.spans["sc"] = spans |
|
|
| options = { |
| "colors": colors, |
| "ents": list(colors.keys()), |
| "style": "ent", |
| "manual": True |
| } |
|
|
| html = displacy.render(doc, style="span", options=options) |
| return html |
|
|
|
|
| def create_graph(json_data): |
| G = nx.Graph() |
|
|
| for node in json_data['nodes']: |
| G.add_node(node['id'], title=f"{node['type']}: {node['detailed_type']}") |
|
|
| for edge in json_data['edges']: |
| G.add_edge(edge['from'], edge['to'], title=edge['label'], label=edge['label']) |
|
|
| nt = Network( |
| width="720px", |
| height="600px", |
| directed=True, |
| notebook=False, |
| bgcolor="#111827", |
| font_color="white" |
| |
| |
| ) |
| nt.from_nx(G) |
| nt.barnes_hut( |
| gravity=-3000, |
| central_gravity=0.3, |
| spring_length=50, |
| spring_strength=0.001, |
| damping=0.09, |
| overlap=0, |
| ) |
|
|
| |
| |
| |
| |
| |
| |
| |
|
|
| html = nt.generate_html() |
| |
| html = html.replace("'", '"') |
| |
|
|
| return f"""<iframe style="width: 140%; height: 620px; margin: 0 auto;" name="result" |
| allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;" |
| sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups |
| allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" |
| allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" |
| |
|
|
| def process_and_visualize(text, model): |
| if not text or not model: |
| raise gr.Error("Text and model must be provided.") |
| json_data = extract(text, model) |
| |
| entities_viz = create_custom_entity_viz(json_data, text) |
| |
| graph_html = create_graph(json_data) |
| return graph_html, entities_viz, json_data |
|
|
|
|
|
|
| with gr.Blocks(title="Phi-3 Mini 4k Instruct Graph (by Emergent Methods") as demo: |
| gr.Markdown("# Phi-3 Mini 4k Instruct Graph (by Emergent Methods)") |
| gr.Markdown("Extract a JSON graph from a text input and visualize it.") |
| with gr.Row(): |
| with gr.Column(scale=1): |
| input_model = gr.Dropdown( |
| MODEL_LIST, label="Model", |
| |
| ) |
| input_text = gr.TextArea(label="Text", info="The text to be extracted") |
|
|
| examples = gr.Examples( |
| examples=[ |
| handle_text("""Legendary rock band Aerosmith has officially announced their retirement from touring after 54 years, citing |
| lead singer Steven Tyler's unrecoverable vocal cord injury. |
| The decision comes after months of unsuccessful treatment for Tyler's fractured larynx, |
| which he suffered in September 2023."""), |
| handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual |
| court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI) |
| in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe, |
| pleaded not guilty to the charges."""), |
| ], |
| inputs=input_text |
| ) |
|
|
| submit_button = gr.Button("Extract and Visualize") |
| |
| with gr.Column(scale=1): |
| output_entity_viz = gr.HTML(label="Entities Visualization", show_label=True) |
| output_graph = gr.HTML(label="Graph Visualization", show_label=True) |
| |
|
|
| submit_button.click( |
| fn=process_and_visualize, |
| inputs=[input_text, input_model], |
| outputs=[output_graph, output_entity_viz] |
| ) |
| |
|
|
| demo.launch(share=False) |