Spaces:
Sleeping
Sleeping
Upload filtravimas.py
Browse files- filtravimas.py +86 -0
filtravimas.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# filtravimas.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
import torchaudio
|
6 |
+
import torch.nn as nn
|
7 |
+
import torchaudio.transforms as T
|
8 |
+
from asteroid.models import DCCRNet
|
9 |
+
|
10 |
+
# Laikinas katalogas išfiltruotiems failams
|
11 |
+
TEMP_DIR = "temp_filtered"
|
12 |
+
OUTPUT_PATH = os.path.join(TEMP_DIR, "ivestis.wav")
|
13 |
+
|
14 |
+
# Užtikriname, kad aplankas egzistuoja
|
15 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
16 |
+
|
17 |
+
# Paprastas Wave-U-Net modelis
|
18 |
+
class WaveUNet(nn.Module):
|
19 |
+
def __init__(self):
|
20 |
+
super(WaveUNet, self).__init__()
|
21 |
+
self.encoder = nn.Sequential(
|
22 |
+
nn.Conv1d(1, 16, kernel_size=3, stride=1, padding=1),
|
23 |
+
nn.ReLU(),
|
24 |
+
nn.Conv1d(16, 32, kernel_size=3, stride=1, padding=1),
|
25 |
+
nn.ReLU(),
|
26 |
+
nn.Conv1d(32, 64, kernel_size=3, stride=1, padding=1),
|
27 |
+
nn.ReLU(),
|
28 |
+
)
|
29 |
+
self.decoder = nn.Sequential(
|
30 |
+
nn.ConvTranspose1d(64, 32, kernel_size=3, stride=1, padding=1),
|
31 |
+
nn.ReLU(),
|
32 |
+
nn.ConvTranspose1d(32, 16, kernel_size=3, stride=1, padding=1),
|
33 |
+
nn.ReLU(),
|
34 |
+
nn.ConvTranspose1d(16, 1, kernel_size=3, stride=1, padding=1)
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
x = self.encoder(x)
|
39 |
+
x = self.decoder(x)
|
40 |
+
return x
|
41 |
+
|
42 |
+
# Wave-U-Net filtravimas
|
43 |
+
def filtruoti_su_waveunet(input_path, output_path):
|
44 |
+
print("🔧 Wave-U-Net filtravimas...")
|
45 |
+
model = WaveUNet()
|
46 |
+
model.eval()
|
47 |
+
mixture, sr = torchaudio.load(input_path)
|
48 |
+
|
49 |
+
if sr != 16000:
|
50 |
+
print("🔁 Resample į 16kHz...")
|
51 |
+
mixture = T.Resample(orig_freq=sr, new_freq=16000)(mixture)
|
52 |
+
|
53 |
+
mixture = mixture.unsqueeze(0)
|
54 |
+
with torch.no_grad():
|
55 |
+
output = model(mixture)
|
56 |
+
|
57 |
+
output = output.squeeze(0)
|
58 |
+
torchaudio.save(output_path, output, 16000)
|
59 |
+
print(f"✅ Išsaugotas Wave-U-Net rezultatas: {output_path}")
|
60 |
+
|
61 |
+
# Denoiser (DCCRNet)
|
62 |
+
def filtruoti_su_denoiser(input_path, output_path):
|
63 |
+
print("🔧 Denoiser (DCCRNet)...")
|
64 |
+
model = DCCRNet.from_pretrained("JorisCos/DCCRNet_Libri1Mix_enhsingle_16k")
|
65 |
+
mixture, sr = torchaudio.load(input_path)
|
66 |
+
|
67 |
+
if sr != 16000:
|
68 |
+
print("🔁 Resample į 16kHz...")
|
69 |
+
mixture = T.Resample(orig_freq=sr, new_freq=16000)(mixture)
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
est_source = model.separate(mixture)
|
73 |
+
|
74 |
+
torchaudio.save(output_path, est_source[0], 16000)
|
75 |
+
print(f"✅ Išsaugotas Denoiser rezultatas: {output_path}")
|
76 |
+
|
77 |
+
# Pasirinkimo funkcija
|
78 |
+
def filtruoti_audio(input_path: str, metodas: str) -> str:
|
79 |
+
if metodas == "Denoiser":
|
80 |
+
filtruoti_su_denoiser(input_path, OUTPUT_PATH)
|
81 |
+
elif metodas == "Wave-U-Net":
|
82 |
+
filtruoti_su_waveunet(input_path, OUTPUT_PATH)
|
83 |
+
else:
|
84 |
+
raise ValueError("Nepalaikomas filtravimo metodas")
|
85 |
+
|
86 |
+
return OUTPUT_PATH
|