IS_DLIB_INSTALLED = False try: import dlib IS_DLIB_INSTALLED = True except ImportError: pass IS_INSIGHTFACE_INSTALLED = False try: from insightface.app import FaceAnalysis IS_INSIGHTFACE_INSTALLED = True except ImportError: pass if not IS_DLIB_INSTALLED and not IS_INSIGHTFACE_INSTALLED: raise Exception("Please install either dlib or insightface to use this node.") import torch #import torch.nn.functional as F import torchvision.transforms.v2 as T #import comfy.utils import os import folder_paths import numpy as np from PIL import Image, ImageDraw, ImageFont, ImageColor DLIB_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "dlib") INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface") THRESHOLDS = { # from DeepFace "VGG-Face": {"cosine": 0.68, "euclidean": 1.17, "L2_norm": 1.17}, "Facenet": {"cosine": 0.40, "euclidean": 10, "L2_norm": 0.80}, "Facenet512": {"cosine": 0.30, "euclidean": 23.56, "L2_norm": 1.04}, "ArcFace": {"cosine": 0.68, "euclidean": 4.15, "L2_norm": 1.13}, "Dlib": {"cosine": 0.07, "euclidean": 0.6, "L2_norm": 0.4}, "SFace": {"cosine": 0.593, "euclidean": 10.734, "L2_norm": 1.055}, "OpenFace": {"cosine": 0.10, "euclidean": 0.55, "L2_norm": 0.55}, "DeepFace": {"cosine": 0.23, "euclidean": 64, "L2_norm": 0.64}, "DeepID": {"cosine": 0.015, "euclidean": 45, "L2_norm": 0.17}, "GhostFaceNet": {"cosine": 0.65, "euclidean": 35.71, "L2_norm": 1.10}, } def tensor_to_image(image): return np.array(T.ToPILImage()(image.permute(2, 0, 1)).convert('RGB')) def image_to_tensor(image): return T.ToTensor()(image).permute(1, 2, 0) #return T.ToTensor()(Image.fromarray(image)).permute(1, 2, 0) def expand_mask(mask, expand, tapered_corners): import scipy c = 0 if tapered_corners else 1 kernel = np.array([[c, 1, c], [1, 1, 1], [c, 1, c]]) mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) out = [] for m in mask: output = m.numpy() for _ in range(abs(expand)): if expand < 0: output = scipy.ndimage.grey_erosion(output, footprint=kernel) else: output = scipy.ndimage.grey_dilation(output, footprint=kernel) output = torch.from_numpy(output) out.append(output) return torch.stack(out, dim=0) def transformation_from_points(points1, points2): points1 = points1.astype(np.float64) points2 = points2.astype(np.float64) c1 = np.mean(points1, axis=0) c2 = np.mean(points2, axis=0) points1 -= c1 points2 -= c2 s1 = np.std(points1) s2 = np.std(points2) points1 /= s1 points2 /= s2 U, S, Vt = np.linalg.svd(points1.T * points2) R = (U * Vt).T return np.vstack([np.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)), np.matrix([0., 0., 1.])]) def mask_from_landmarks(image, landmarks): import cv2 mask = np.zeros(image.shape[:2], dtype=np.float64) points = cv2.convexHull(landmarks) cv2.fillConvexPoly(mask, points, color=1) return mask class InsightFace: def __init__(self, provider="CPU", name="buffalo_l"): self.face_analysis = FaceAnalysis(name=name, root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',]) self.face_analysis.prepare(ctx_id=0, det_size=(640, 640)) self.thresholds = THRESHOLDS["ArcFace"] def get_face(self, image): for size in [(size, size) for size in range(640, 256, -64)]: self.face_analysis.det_model.input_size = size faces = self.face_analysis.get(image) if len(faces) > 0: return sorted(faces, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]), reverse=True) return None def get_embeds(self, image): face = self.get_face(image) if face is not None: face = face[0].normed_embedding return face def get_bbox(self, image, padding=0, padding_percent=0): faces = self.get_face(np.array(image)) img = [] x = [] y = [] w = [] h = [] for face in faces: x1, y1, x2, y2 = face['bbox'] width = x2 - x1 height = y2 - y1 x1 = int(max(0, x1 - int(width * padding_percent) - padding)) y1 = int(max(0, y1 - int(height * padding_percent) - padding)) x2 = int(min(image.width, x2 + int(width * padding_percent) + padding)) y2 = int(min(image.height, y2 + int(height * padding_percent) + padding)) crop = image.crop((x1, y1, x2, y2)) img.append(T.ToTensor()(crop).permute(1, 2, 0).unsqueeze(0)) x.append(x1) y.append(y1) w.append(x2 - x1) h.append(y2 - y1) return (img, x, y, w, h) def get_keypoints(self, image): face = self.get_face(image) if face is not None: shape = face[0]['kps'] right_eye = shape[0] left_eye = shape[1] nose = shape[2] left_mouth = shape[3] right_mouth = shape[4] return [left_eye, right_eye, nose, left_mouth, right_mouth] return None def get_landmarks(self, image, extended_landmarks=False): face = self.get_face(image) if face is not None: shape = face[0]['landmark_2d_106'] landmarks = np.round(shape).astype(np.int64) main_features = landmarks[33:] left_eye = landmarks[87:97] right_eye = landmarks[33:43] eyes = landmarks[[*range(33,43), *range(87,97)]] nose = landmarks[72:87] mouth = landmarks[52:72] left_brow = landmarks[97:106] right_brow = landmarks[43:52] outline = landmarks[[*range(33), *range(48,51), *range(102, 105)]] outline_forehead = outline return [landmarks, main_features, eyes, left_eye, right_eye, nose, mouth, left_brow, right_brow, outline, outline_forehead] return None class DLib: def __init__(self): self.face_detector = dlib.get_frontal_face_detector() # check if the models are available if not os.path.exists(os.path.join(DLIB_DIR, "shape_predictor_5_face_landmarks.dat")): raise Exception("The 5 point landmark model is not available. Please download it from https://huggingface.co/matt3ounstable/dlib_predictor_recognition/blob/main/shape_predictor_5_face_landmarks.dat") if not os.path.exists(os.path.join(DLIB_DIR, "dlib_face_recognition_resnet_model_v1.dat")): raise Exception("The face recognition model is not available. Please download it from https://huggingface.co/matt3ounstable/dlib_predictor_recognition/blob/main/dlib_face_recognition_resnet_model_v1.dat") self.shape_predictor = dlib.shape_predictor(os.path.join(DLIB_DIR, "shape_predictor_5_face_landmarks.dat")) self.face_recognition = dlib.face_recognition_model_v1(os.path.join(DLIB_DIR, "dlib_face_recognition_resnet_model_v1.dat")) self.thresholds = THRESHOLDS["Dlib"] def get_face(self, image): faces = self.face_detector(np.array(image), 1) #faces, scores, _ = self.face_detector.run(np.array(image), 1, -1) if len(faces) > 0: return sorted(faces, key=lambda x: x.area(), reverse=True) #return [face for _, face in sorted(zip(scores, faces), key=lambda x: x[0], reverse=True)] # sort by score return None def get_embeds(self, image): faces = self.get_face(image) if faces is not None: shape = self.shape_predictor(image, faces[0]) faces = np.array(self.face_recognition.compute_face_descriptor(image, shape)) return faces def get_bbox(self, image, padding=0, padding_percent=0): faces = self.get_face(image) img = [] x = [] y = [] w = [] h = [] for face in faces: x1 = max(0, face.left() - int(face.width() * padding_percent) - padding) y1 = max(0, face.top() - int(face.height() * padding_percent) - padding) x2 = min(image.width, face.right() + int(face.width() * padding_percent) + padding) y2 = min(image.height, face.bottom() + int(face.height() * padding_percent) + padding) crop = image.crop((x1, y1, x2, y2)) img.append(T.ToTensor()(crop).permute(1, 2, 0).unsqueeze(0)) x.append(x1) y.append(y1) w.append(x2 - x1) h.append(y2 - y1) return (img, x, y, w, h) def get_keypoints(self, image): faces = self.get_face(image) if faces is not None: shape = self.shape_predictor(image, faces[0]) left_eye = [(shape.part(0).x + shape.part(1).x // 2), (shape.part(0).y + shape.part(1).y) // 2] right_eye = [(shape.part(2).x + shape.part(3).x // 2), (shape.part(2).y + shape.part(3).y) // 2] nose = [shape.part(4).x, shape.part(4).y] return [left_eye, right_eye, nose] return None def get_landmarks(self, image, extended_landmarks=False): if extended_landmarks: if not os.path.exists(os.path.join(DLIB_DIR, "shape_predictor_81_face_landmarks.dat")): raise Exception("The 68 point landmark model is not available. Please download it from https://huggingface.co/matt3ounstable/dlib_predictor_recognition/blob/main/shape_predictor_81_face_landmarks.dat") predictor = dlib.shape_predictor(os.path.join(DLIB_DIR, "shape_predictor_81_face_landmarks.dat")) else: if not os.path.exists(os.path.join(DLIB_DIR, "shape_predictor_68_face_landmarks.dat")): raise Exception("The 68 point landmark model is not available. Please download it from https://huggingface.co/matt3ounstable/dlib_predictor_recognition/blob/main/shape_predictor_68_face_landmarks.dat") predictor = dlib.shape_predictor(os.path.join(DLIB_DIR, "shape_predictor_68_face_landmarks.dat")) faces = self.get_face(image) if faces is not None: shape = predictor(image, faces[0]) landmarks = np.array([[p.x, p.y] for p in shape.parts()]) main_features = landmarks[17:68] left_eye = landmarks[42:48] right_eye = landmarks[36:42] eyes = landmarks[36:48] nose = landmarks[27:36] mouth = landmarks[48:68] left_brow = landmarks[17:22] right_brow = landmarks[22:27] outline = landmarks[[*range(17), *range(26,16,-1)]] if extended_landmarks: outline_forehead = landmarks[[*range(17), *range(26,16,-1), *range(68, 81)]] else: outline_forehead = outline return [landmarks, main_features, eyes, left_eye, right_eye, nose, mouth, left_brow, right_brow, outline, outline_forehead] return None class FaceAnalysisModels: @classmethod def INPUT_TYPES(s): libraries = [] if IS_INSIGHTFACE_INSTALLED: libraries.append("insightface") if IS_DLIB_INSTALLED: libraries.append("dlib") return {"required": { "library": (libraries, ), "provider": (["CPU", "CUDA", "DirectML", "OpenVINO", "ROCM", "CoreML"], ), }} RETURN_TYPES = ("ANALYSIS_MODELS", ) FUNCTION = "load_models" CATEGORY = "FaceAnalysis" def load_models(self, library, provider): out = {} if library == "insightface": out = InsightFace(provider) else: out = DLib() return (out, ) class FaceBoundingBox: @classmethod def INPUT_TYPES(s): return { "required": { "analysis_models": ("ANALYSIS_MODELS", ), "image": ("IMAGE", ), "padding": ("INT", { "default": 0, "min": 0, "max": 4096, "step": 1 }), "padding_percent": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 2.0, "step": 0.05 }), "index": ("INT", { "default": -1, "min": -1, "max": 4096, "step": 1 }), }, } RETURN_TYPES = ("IMAGE", "INT", "INT", "INT", "INT") RETURN_NAMES = ("IMAGE", "x", "y", "width", "height") FUNCTION = "bbox" CATEGORY = "FaceAnalysis" OUTPUT_IS_LIST = (True, True, True, True, True,) def bbox(self, analysis_models, image, padding, padding_percent, index=-1): out_img = [] out_x = [] out_y = [] out_w = [] out_h = [] for i in image: i = T.ToPILImage()(i.permute(2, 0, 1)).convert('RGB') img, x, y, w, h = analysis_models.get_bbox(i, padding, padding_percent) out_img.extend(img) out_x.extend(x) out_y.extend(y) out_w.extend(w) out_h.extend(h) if not out_img: raise Exception('No face detected in image.') if len(out_img) == 1: index = 0 if index > len(out_img) - 1: index = len(out_img) - 1 if index != -1: out_img = [out_img[index]] out_x = [out_x[index]] out_y = [out_y[index]] out_w = [out_w[index]] out_h = [out_h[index]] #else: # w = out_img[0].shape[1] # h = out_img[0].shape[0] #out_img = [comfy.utils.common_upscale(img.unsqueeze(0).movedim(-1,1), w, h, "bilinear", "center").movedim(1,-1).squeeze(0) for img in out_img] #out_img = torch.stack(out_img) return (out_img, out_x, out_y, out_w, out_h,) class FaceEmbedDistance: @classmethod def INPUT_TYPES(s): return { "required": { "analysis_models": ("ANALYSIS_MODELS", ), "reference": ("IMAGE", ), "image": ("IMAGE", ), "similarity_metric": (["L2_norm", "cosine", "euclidean"], ), "filter_thresh": ("FLOAT", { "default": 100.0, "min": 0.001, "max": 100.0, "step": 0.001 }), "filter_best": ("INT", { "default": 0, "min": 0, "max": 4096, "step": 1 }), "generate_image_overlay": ("BOOLEAN", { "default": True }), }, } RETURN_TYPES = ("IMAGE", "FLOAT") RETURN_NAMES = ("IMAGE", "distance") FUNCTION = "analize" CATEGORY = "FaceAnalysis" def analize(self, analysis_models, reference, image, similarity_metric, filter_thresh, filter_best, generate_image_overlay=True): if generate_image_overlay: font = ImageFont.truetype(os.path.join(os.path.dirname(os.path.realpath(__file__)), "Inconsolata.otf"), 32) background_color = ImageColor.getrgb("#000000AA") txt_height = font.getmask("Q").getbbox()[3] + font.getmetrics()[1] if filter_thresh == 0.0: filter_thresh = analysis_models.thresholds[similarity_metric] # you can send multiple reference images in which case the embeddings are averaged ref = [] for i in reference: ref_emb = analysis_models.get_embeds(np.array(T.ToPILImage()(i.permute(2, 0, 1)).convert('RGB'))) if ref_emb is not None: ref.append(torch.from_numpy(ref_emb)) if ref == []: raise Exception('No face detected in reference image') ref = torch.stack(ref) ref = np.array(torch.mean(ref, dim=0)) out = [] out_dist = [] for i in image: img = np.array(T.ToPILImage()(i.permute(2, 0, 1)).convert('RGB')) img = analysis_models.get_embeds(img) if img is None: # No face detected dist = 100.0 norm_dist = 0 else: if np.array_equal(ref, img): # Same face dist = 0.0 norm_dist = 0.0 else: if similarity_metric == "L2_norm": #dist = euclidean_distance(ref, img, True) ref = ref / np.linalg.norm(ref) img = img / np.linalg.norm(img) dist = np.float64(np.linalg.norm(ref - img)) elif similarity_metric == "cosine": dist = np.float64(1 - np.dot(ref, img) / (np.linalg.norm(ref) * np.linalg.norm(img))) #dist = cos_distance(ref, img) else: #dist = euclidean_distance(ref, img) dist = np.float64(np.linalg.norm(ref - img)) norm_dist = min(1.0, 1 / analysis_models.thresholds[similarity_metric] * dist) if dist <= filter_thresh: print(f"\033[96mFace Analysis: value: {dist}, normalized: {norm_dist}\033[0m") if generate_image_overlay: tmp = T.ToPILImage()(i.permute(2, 0, 1)).convert('RGBA') txt = Image.new('RGBA', (image.shape[2], txt_height), color=background_color) draw = ImageDraw.Draw(txt) draw.text((0, 0), f"VALUE: {round(dist, 3)} | DIST: {round(norm_dist, 3)}", font=font, fill=(255, 255, 255, 255)) composite = Image.new('RGBA', tmp.size) composite.paste(txt, (0, tmp.height - txt.height)) composite = Image.alpha_composite(tmp, composite) out.append(T.ToTensor()(composite).permute(1, 2, 0)) else: out.append(i) out_dist.append(dist) if not out: raise Exception('No image matches the filter criteria.') out = torch.stack(out) # filter out the best matches if filter_best > 0: filter_best = min(filter_best, len(out)) out_dist, idx = torch.topk(torch.tensor(out_dist), filter_best, largest=False) out = out[idx] out_dist = out_dist.cpu().numpy().tolist() if out.shape[3] > 3: out = out[:, :, :, :3] return(out, out_dist,) class FaceAlign: @classmethod def INPUT_TYPES(s): return { "required": { "analysis_models": ("ANALYSIS_MODELS", ), "image_from": ("IMAGE", ), }, "optional": { "image_to": ("IMAGE", ), } } RETURN_TYPES = ("IMAGE", ) FUNCTION = "align" CATEGORY = "FaceAnalysis" def align(self, analysis_models, image_from, image_to=None): image_from = tensor_to_image(image_from[0]) shape = analysis_models.get_keypoints(image_from) l_eye_from = shape[0] r_eye_from = shape[1] angle = float(np.degrees(np.arctan2(l_eye_from[1] - r_eye_from[1], l_eye_from[0] - r_eye_from[0]))) if image_to is not None: image_to = tensor_to_image(image_to[0]) shape = analysis_models.get_keypoints(image_to) l_eye_to = shape[0] r_eye_to = shape[1] angle -= float(np.degrees(np.arctan2(l_eye_to[1] - r_eye_to[1], l_eye_to[0] - r_eye_to[0]))) # rotate the image image_from = Image.fromarray(image_from).rotate(angle) image_from = image_to_tensor(image_from).unsqueeze(0) #img = np.array(Image.fromarray(image_from).rotate(angle)) #img = image_to_tensor(img).unsqueeze(0) return (image_from, ) class faceSegmentation: @classmethod def INPUT_TYPES(s): return { "required": { "analysis_models": ("ANALYSIS_MODELS", ), "image": ("IMAGE", ), "area": (["face", "main_features", "eyes", "left_eye", "right_eye", "nose", "mouth", "face+forehead (if available)"], ), "grow": ("INT", { "default": 0, "min": -4096, "max": 4096, "step": 1 }), "grow_tapered": ("BOOLEAN", { "default": False }), "blur": ("INT", { "default": 13, "min": 1, "max": 4096, "step": 2 }), } } RETURN_TYPES = ("MASK", "IMAGE", "MASK", "IMAGE", "INT", "INT", "INT", "INT") RETURN_NAMES = ("mask", "image", "seg_mask", "seg_image", "x", "y", "width", "height") FUNCTION = "segment" CATEGORY = "FaceAnalysis" def segment(self, analysis_models, image, area, grow, grow_tapered, blur): face = tensor_to_image(image[0]) if face is None: raise Exception('No face detected in image') landmarks = analysis_models.get_landmarks(face, extended_landmarks=("forehead" in area)) if area == "face": landmarks = landmarks[-2] elif area == "eyes": landmarks = landmarks[2] elif area == "left_eye": landmarks = landmarks[3] elif area == "right_eye": landmarks = landmarks[4] elif area == "nose": landmarks = landmarks[5] elif area == "mouth": landmarks = landmarks[6] elif area == "main_features": landmarks = landmarks[1] elif "forehead" in area: landmarks = landmarks[-1] #mask = np.zeros(face.shape[:2], dtype=np.float64) #points = cv2.convexHull(landmarks) #cv2.fillConvexPoly(mask, points, color=1) mask = mask_from_landmarks(face, landmarks) mask = image_to_tensor(mask).unsqueeze(0).squeeze(-1).clamp(0, 1) _, y, x = torch.where(mask) x1, x2 = x.min().item(), x.max().item() y1, y2 = y.min().item(), y.max().item() smooth = int(min(max((x2 - x1), (y2 - y1)) * 0.2, 99)) if smooth > 1: if smooth % 2 == 0: smooth+= 1 mask = T.functional.gaussian_blur(mask.bool().unsqueeze(1), smooth).squeeze(1).float() if grow != 0: mask = expand_mask(mask, grow, grow_tapered) if blur > 1: if blur % 2 == 0: blur+= 1 mask = T.functional.gaussian_blur(mask.unsqueeze(1), blur).squeeze(1).float() # extract segment from image _, y, x = torch.where(mask) x1, x2 = x.min().item(), x.max().item() y1, y2 = y.min().item(), y.max().item() segment_mask = mask[:, y1:y2, x1:x2] segment_image = image[0][y1:y2, x1:x2, :].unsqueeze(0) image = image * mask.unsqueeze(-1).repeat(1, 1, 1, 3) return (mask, image, segment_mask, segment_image, x1, y1, x2 - x1, y2 - y1,) class FaceWarp: @classmethod def INPUT_TYPES(s): return { "required": { "analysis_models": ("ANALYSIS_MODELS", ), "image_from": ("IMAGE", ), "image_to": ("IMAGE", ), "keypoints": (["main features", "full face", "full face+forehead (if available)"], ), "grow": ("INT", { "default": 0, "min": -4096, "max": 4096, "step": 1 }), "blur": ("INT", { "default": 13, "min": 1, "max": 4096, "step": 2 }), } } RETURN_TYPES = ("IMAGE", "MASK",) FUNCTION = "warp" CATEGORY = "FaceAnalysis" def warp(self, analysis_models, image_from, image_to, keypoints, grow, blur): import cv2 from color_matcher import ColorMatcher from color_matcher.normalizer import Normalizer cm = ColorMatcher() image_from = tensor_to_image(image_from[0]) image_to = tensor_to_image(image_to[0]) shape_from = analysis_models.get_landmarks(image_from, extended_landmarks=("forehead" in keypoints)) shape_to = analysis_models.get_landmarks(image_to, extended_landmarks=("forehead" in keypoints)) if keypoints == "main features": shape_from = shape_from[1] shape_to = shape_to[1] else: shape_from = shape_from[0] shape_to = shape_to[0] # get the transformation matrix from_points = np.array(shape_from, dtype=np.float64) to_points = np.array(shape_to, dtype=np.float64) matrix = cv2.estimateAffine2D(from_points, to_points)[0] output = cv2.warpAffine(image_from, matrix, (image_to.shape[1], image_to.shape[0]), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101) mask_from = mask_from_landmarks(image_from, shape_from) mask_to = mask_from_landmarks(image_to, shape_to) output_mask = cv2.warpAffine(mask_from, matrix, (image_to.shape[1], image_to.shape[0])) output_mask = torch.from_numpy(output_mask).unsqueeze(0).unsqueeze(-1).float() mask_to = torch.from_numpy(mask_to).unsqueeze(0).unsqueeze(-1).float() output_mask = torch.min(output_mask, mask_to) output = image_to_tensor(output).unsqueeze(0) image_to = image_to_tensor(image_to).unsqueeze(0) if grow != 0: output_mask = expand_mask(output_mask.squeeze(-1), grow, True).unsqueeze(-1) if blur > 1: if blur % 2 == 0: blur+= 1 output_mask = T.functional.gaussian_blur(output_mask.permute(0,3,1,2), blur).permute(0,2,3,1) padding = 0 _, y, x, _ = torch.where(mask_to) x1 = max(0, x.min().item() - padding) y1 = max(0, y.min().item() - padding) x2 = min(image_to.shape[2], x.max().item() + padding) y2 = min(image_to.shape[1], y.max().item() + padding) cm_ref = image_to[:, y1:y2, x1:x2, :] _, y, x, _ = torch.where(output_mask) x1 = max(0, x.min().item() - padding) y1 = max(0, y.min().item() - padding) x2 = min(output.shape[2], x.max().item() + padding) y2 = min(output.shape[1], y.max().item() + padding) cm_image = output[:, y1:y2, x1:x2, :] normalized = cm.transfer(src=Normalizer(cm_image[0].numpy()).type_norm() , ref=Normalizer(cm_ref[0].numpy()).type_norm(), method='mkl') normalized = torch.from_numpy(normalized).unsqueeze(0) factor = 0.8 output[:, y1:y1+cm_image.shape[1], x1:x1+cm_image.shape[2], :] = factor * normalized + (1 - factor) * cm_image output_image = output * output_mask + image_to * (1 - output_mask) output_image = output_image.clamp(0, 1) output_mask = output_mask.clamp(0, 1).squeeze(-1) return (output_image, output_mask) """ def cos_distance(source, test): a = np.matmul(np.transpose(source), test) b = np.sum(np.multiply(source, source)) c = np.sum(np.multiply(test, test)) return np.float64(1 - (a / (np.sqrt(b) * np.sqrt(c)))) def euclidean_distance(source, test, norm=False): if norm: source = l2_normalize(source) test = l2_normalize(test) dist = source - test dist = np.sum(np.multiply(dist, dist)) dist = np.sqrt(dist) return np.float64(dist) def l2_normalize(x): return x / np.sqrt(np.sum(np.multiply(x, x))) """ NODE_CLASS_MAPPINGS = { "FaceEmbedDistance": FaceEmbedDistance, "FaceAnalysisModels": FaceAnalysisModels, "FaceBoundingBox": FaceBoundingBox, "FaceAlign": FaceAlign, "FaceSegmentation": faceSegmentation, "FaceWarp": FaceWarp, } NODE_DISPLAY_NAME_MAPPINGS = { "FaceEmbedDistance": "Face Embeds Distance", "FaceAnalysisModels": "Face Analysis Models", "FaceBoundingBox": "Face Bounding Box", "FaceAlign": "Face Align", "FaceSegmentation": "Face Segmentation", "FaceWarp": "Face Warp", }