import torch import comfy.utils import numpy as np from PIL import Image, ImageSequence, ImageOps class ConstrainImageNode: """ A node that constrains an image to a maximum and minimum size while maintaining aspect ratio. """ @classmethod def INPUT_TYPES(cls): return { "required": { "images": ("IMAGE",), "max_width": ("INT", {"default": 1024, "min": 0}), "max_height": ("INT", {"default": 1024, "min": 0}), "min_width": ("INT", {"default": 0, "min": 0}), "min_height": ("INT", {"default": 0, "min": 0}), "crop_if_required": (["yes", "no"], {"default": "no"}), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "constrain_image" CATEGORY = "tbox/Image" OUTPUT_IS_LIST = (True,) def constrain_image(self, images, max_width, max_height, min_width, min_height, crop_if_required): crop_if_required = crop_if_required == "yes" results = [] for image in images: i = 255. * image.cpu().numpy() img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)).convert("RGB") current_width, current_height = img.size aspect_ratio = current_width / current_height constrained_width = max(min(current_width, min_width), max_width) constrained_height = max(min(current_height, min_height), max_height) if constrained_width / constrained_height > aspect_ratio: constrained_width = max(int(constrained_height * aspect_ratio), min_width) if crop_if_required: constrained_height = int(current_height / (current_width / constrained_width)) else: constrained_height = max(int(constrained_width / aspect_ratio), min_height) if crop_if_required: constrained_width = int(current_width / (current_height / constrained_height)) resized_image = img.resize((constrained_width, constrained_height), Image.LANCZOS) if crop_if_required and (constrained_width > max_width or constrained_height > max_height): left = max((constrained_width - max_width) // 2, 0) top = max((constrained_height - max_height) // 2, 0) right = min(constrained_width, max_width) + left bottom = min(constrained_height, max_height) + top resized_image = resized_image.crop((left, top, right, bottom)) resized_image = np.array(resized_image).astype(np.float32) / 255.0 resized_image = torch.from_numpy(resized_image)[None,] results.append(resized_image) return (results,) # https://github.com/bronkula/comfyui-fitsize class ImageSizeNode: @classmethod def INPUT_TYPES(cls): return { "required": { "image": ("IMAGE", ), } } RETURN_TYPES = ("INT", "INT", "INT") RETURN_NAMES = ("width", "height", "count") FUNCTION = "get_size" CATEGORY = "tbox/Image" def get_size(self, image): print(f'shape of image:{image.shape}') return (image.shape[2], image.shape[1], image[0]) class ImageResizeNode: @classmethod def INPUT_TYPES(cls): return { "required": { "image": ("IMAGE", ), "method": (["nearest", "bilinear", "bicubic", "area", "nearest-exact", "lanczos"],), }, "optional": { "width": ("INT,FLOAT", { "default": 0.0, "step": 0.1 }), "height": ("INT,FLOAT", { "default": 0.0, "step": 0.1 }), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "resize" CATEGORY = "tbox/Image" def resize(self, image, method, width, height): print(f'shape of image:{image.shape}, resolution:{width}x{height} type: {type(width)}, {type(height)}') if width == 0 and height == 0: s = image else: samples = image.movedim(-1,1) if width == 0: width = max(1, round(samples.shape[3] * height / samples.shape[2])) elif height == 0: height = max(1, round(samples.shape[2] * width / samples.shape[3])) s = comfy.utils.common_upscale(samples, width, height, method, True) s = s.movedim(1,-1) return (s,)