import os import cv2 import torch import requests import itertools import folder_paths import psutil import numpy as np from comfy.utils import common_upscale from io import BytesIO from PIL import Image, ImageSequence, ImageOps def pil2tensor(img): output_images = [] output_masks = [] for i in ImageSequence.Iterator(img): i = ImageOps.exif_transpose(i) if i.mode == 'I': i = i.point(lambda i: i * (1 / 255)) image = i.convert("RGB") image = np.array(image).astype(np.float32) / 255.0 image = torch.from_numpy(image)[None,] if 'A' in i.getbands(): mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 mask = 1. - torch.from_numpy(mask) else: mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") output_images.append(image) output_masks.append(mask.unsqueeze(0)) if len(output_images) > 1: output_image = torch.cat(output_images, dim=0) output_mask = torch.cat(output_masks, dim=0) else: output_image = output_images[0] output_mask = output_masks[0] return (output_image, output_mask) def load_image(image_source): if image_source.startswith('http'): print(image_source) response = requests.get(image_source) img = Image.open(BytesIO(response.content)) file_name = image_source.split('/')[-1] else: img = Image.open(image_source) file_name = os.path.basename(image_source) return img, file_name class LoadImageNode: @classmethod def INPUT_TYPES(cls): return { "required": { "path": ("STRING", {"multiline": True, "dynamicPrompts": False}) } } RETURN_TYPES = ("IMAGE", "MASK") FUNCTION = "load_image" CATEGORY = "tbox/Image" def load_image(self, path): filepaht = path.split('\n')[0] img, name = load_image(filepaht) img_out, mask_out = pil2tensor(img) return (img_out, mask_out) if __name__ == "__main__": img, name = load_image("https://creativestorage.blob.core.chinacloudapi.cn/test/bird.png") img_out, mask_out = pil2tensor(img)