File size: 28,587 Bytes
4450790
 
 
 
 
 
6bc28eb
ef7b4df
b8da6bf
6a1c163
0013162
 
 
 
 
 
 
 
 
 
 
 
 
 
4ecc9f3
0013162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007757
 
 
 
 
b8da6bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007757
b8da6bf
3007757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8da6bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007757
 
 
580d7fc
0013162
 
 
 
 
3007757
0013162
6a1c163
4ecc9f3
 
4450790
6a1c163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4450790
 
 
 
 
6a1c163
4450790
6a1c163
 
 
 
 
4450790
 
6a1c163
 
4450790
 
 
 
6a1c163
 
4450790
6a1c163
 
4450790
 
6a1c163
 
4450790
 
6a1c163
4450790
6a1c163
 
 
4450790
 
 
 
 
6a1c163
4450790
6a1c163
 
 
4450790
 
 
6a1c163
 
 
4450790
6a1c163
4450790
6a1c163
4450790
 
 
 
 
6a1c163
4450790
 
 
6a1c163
 
4450790
6a1c163
 
 
 
4450790
 
 
 
6a1c163
 
 
4450790
 
 
 
6a1c163
 
4450790
6a1c163
4450790
 
6a1c163
 
4ecc9f3
4450790
4ecc9f3
4450790
6a1c163
 
 
 
 
 
 
756d16c
 
 
 
 
 
 
 
 
 
4ecc9f3
6a1c163
 
 
 
4ecc9f3
6a1c163
 
 
 
 
 
 
4ecc9f3
6a1c163
 
 
756d16c
716a0b4
6a1c163
d92d7f5
fd1c741
 
6a1c163
 
fd1c741
4ecc9f3
fd1c741
6a1c163
 
 
 
 
 
 
 
4ecc9f3
6a1c163
 
 
 
 
 
 
 
 
fd1c741
4ecc9f3
fd1c741
6a1c163
 
fd1c741
4ecc9f3
fd1c741
6a1c163
 
 
 
 
 
 
 
 
 
 
 
 
fd1c741
6a1c163
 
 
 
 
 
 
 
 
 
 
 
 
fd1c741
4ecc9f3
6a1c163
 
 
 
 
 
 
 
 
 
4ecc9f3
6a1c163
a1fd8fe
 
 
331cf26
 
 
 
 
 
a1fd8fe
4ecc9f3
1fb62f2
 
 
4ecc9f3
 
756d16c
9c6ce70
6bc28eb
 
4450790
6a1c163
 
 
4450790
6a1c163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4450790
6a1c163
 
 
 
4450790
6a1c163
 
 
 
 
 
 
 
 
 
4450790
6a1c163
 
 
 
4450790
6a1c163
 
 
 
 
 
 
 
 
 
 
 
 
 
4450790
6a1c163
 
 
 
 
 
 
 
 
 
 
4450790
6a1c163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4450790
6a1c163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4450790
6a1c163
 
 
 
 
 
4450790
6a1c163
 
 
 
 
 
 
 
 
4450790
6a1c163
 
 
 
 
 
 
 
 
 
 
 
 
4450790
6a1c163
 
 
 
 
4450790
6a1c163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4450790
6a1c163
 
 
 
4450790
6a1c163
 
 
 
4450790
6a1c163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4450790
6a1c163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4450790
6a1c163
4450790
 
6a1c163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4450790
6a1c163
 
 
 
 
 
4450790
6a1c163
4450790
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
import spaces
from comfy import model_management
import subprocess

from huggingface_hub import hf_hub_download
from huggingface_hub import snapshot_download
#hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir="models/style_models")

#https://huggingface.co/autismanon/modeldump/blob/main/dreamshaper_8.safetensors
print("dreamshaper_8.safetensors")
hf_hub_download(repo_id="autismanon/modeldump", filename="dreamshaper_8.safetensors", local_dir="models/checkpoints/SD1.5/")

#https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_openpose.pth
print("control_v11p_sd15_openpose.pth")
hf_hub_download(repo_id="lllyasviel/ControlNet-v1-1", filename="control_v11p_sd15_openpose.pth", local_dir="models/controlnet/SD1.5/")

#https://huggingface.co/microsoft/Florence-2-base
print("microsoft/Florence-2-base")
snapshot_download(repo_id="microsoft/Florence-2-base", local_dir="models/LLM/Florence-2-base/")

#https://huggingface.co/ahtoshkaa/Dreamshaper/blob/d4415d1a2644f08ab34bd7adabfbbb70571a782a/dreamshaper_8Inpainting.safetensors
print("dreamshaper_8Inpainting.safetensors")
hf_hub_download(repo_id="ahtoshkaa/Dreamshaper", filename="dreamshaper_8Inpainting.safetensors", local_dir="models/checkpoints/SD1.5/")

#https://huggingface.co/naonovn/Lora/blob/main/add_detail.safetensors
print("add_detail.safetensors")
hf_hub_download(repo_id="naonovn/Lora", filename="add_detail.safetensors", local_dir="models/loras/")

#https://huggingface.co/Dreamspire/BaldifierW2/blob/main/BaldifierW2.safetensors
print("BaldifierW2.safetensors")
hf_hub_download(repo_id="Dreamspire/BaldifierW2", filename="BaldifierW2.safetensors", local_dir="models/loras/")

#https://huggingface.co/lokCX/4x-Ultrasharp/blob/main/4x-UltraSharp.pth
print("UltraSharp.pth")
hf_hub_download(repo_id="lokCX/4x-Ultrasharp", filename="4x-UltraSharp.pth", local_dir="models/upscale_models/")

#./clip_vision/CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors
#https://huggingface.co/h94/IP-Adapter/blob/main/models/image_encoder/model.safetensors
print("CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/image_encoder/model.safetensors", local_dir="models/clip_vision/")
# rename
try:
    source_file = "models/clip_vision/models/image_encoder/model.safetensors"
    destination_file = "models/clip_vision/CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors"

    result = subprocess.run(["mv", source_file, destination_file], check=True, capture_output=True, text=True)

    # check=True raises a CalledProcessError if the command fails (returns a non-zero exit code)
    # capture_output=True captures stdout and stderr.  text=True decodes to string
    print(f"Command executed successfully. Return code: {result.returncode}")
    print(f"Standard output: {result.stdout}")
    print(f"Standard error: {result.stderr}")

except subprocess.CalledProcessError as e:
    print(f"Command failed with error code: {e.returncode}")
    print(f"Standard output: {e.stdout}")
    print(f"Standard error: {e.stderr}")
except FileNotFoundError:
    print("Error: The 'mv' command was not found in your system's PATH.")

print("CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors done")


#./ipadapter/ip-adapter_sd15_light_v11.bin
#./ipadapter/ip-adapter_sd15.safetensors
#./ipadapter/ip-adapter-plus-face_sd15.safetensors
#https://huggingface.co/h94/IP-Adapter/blob/main/models/
print("ipadapter")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/ip-adapter_sd15.safetensors", local_dir="models/ipadapter/")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/ip-adapter_sd15_light_v11.bin", local_dir="models/ipadapter/")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/ip-adapter-plus_sd15.safetensors", local_dir="models/ipadapter/")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/ip-adapter-plus-face_sd15.safetensors", local_dir="models/ipadapter/")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/ip-adapter-full-face_sd15.safetensors", local_dir="models/ipadapter/")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/ip-adapter_sd15_vit-G.safetensors", local_dir="models/ipadapter/")
# rename
try:
    source_file = "models/ipadapter/models/*"
    destination_file = "models/ipadapter/"

    result = subprocess.run(["mv", source_file, destination_file], check=True, capture_output=True, text=True)

    # check=True raises a CalledProcessError if the command fails (returns a non-zero exit code)
    # capture_output=True captures stdout and stderr.  text=True decodes to string
    print(f"Command executed successfully. Return code: {result.returncode}")
    print(f"Standard output: {result.stdout}")
    print(f"Standard error: {result.stderr}")

except subprocess.CalledProcessError as e:
    print(f"Command failed with error code: {e.returncode}")
    print(f"Standard output: {e.stdout}")
    print(f"Standard error: {e.stderr}")
except FileNotFoundError:
    print("Error: The 'mv' command was not found in your system's PATH.")
print("ipadapter done")


#download auto when startup
#./insightface/models/buffalo_l/w600k_r50.onnx
#./insightface/models/buffalo_l/det_10g.onnx
#./insightface/models/buffalo_l/2d106det.onnx
#./insightface/models/buffalo_l/1k3d68.onnx
#./insightface/models/buffalo_l/genderage.onnx

#./annotator/yzd-v/DWPose/yolox_l.onnx

print("UltraSharp.pth")

def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
    """Returns the value at the given index of a sequence or mapping.

    If the object is a sequence (like list or string), returns the value at the given index.
    If the object is a mapping (like a dictionary), returns the value at the index-th key.

    Some return a dictionary, in these cases, we look for the "results" key

    Args:
        obj (Union[Sequence, Mapping]): The object to retrieve the value from.
        index (int): The index of the value to retrieve.

    Returns:
        Any: The value at the given index.

    Raises:
        IndexError: If the index is out of bounds for the object and the object is not a mapping.
    """
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]


def find_path(name: str, path: str = None) -> str:
    """
    Recursively looks at parent folders starting from the given path until it finds the given name.
    Returns the path as a Path object if found, or None otherwise.
    """
    # If no path is given, use the current working directory
    if path is None:
        path = os.getcwd()

    # Check if the current directory contains the name
    if name in os.listdir(path):
        path_name = os.path.join(path, name)
        print(f"{name} found: {path_name}")
        return path_name

    # Get the parent directory
    parent_directory = os.path.dirname(path)

    # If the parent directory is the same as the current directory, we've reached the root and stop the search
    if parent_directory == path:
        return None

    # Recursively call the function with the parent directory
    return find_path(name, parent_directory)


def add_comfyui_directory_to_sys_path() -> None:
    """
    Add 'ComfyUI' to the sys.path
    """
    comfyui_path = find_path("ComfyUI")
    if comfyui_path is not None and os.path.isdir(comfyui_path):
        sys.path.append(comfyui_path)
        print(f"'{comfyui_path}' added to sys.path")


def add_extra_model_paths() -> None:
    """
    Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
    """
    try:
        from main import load_extra_path_config
    except ImportError:
        print(
            "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
        )
        from utils.extra_config import load_extra_path_config

    extra_model_paths = find_path("extra_model_paths.yaml")

    if extra_model_paths is not None:
        load_extra_path_config(extra_model_paths)
    else:
        print("Could not find the extra_model_paths config file.")


add_comfyui_directory_to_sys_path()
add_extra_model_paths()


# MODIFIED FUNCTION - THE CORE FIX IS HERE
def import_custom_nodes() -> None:
    """
    This function now correctly mimics the necessary parts of ComfyUI's startup
    to ensure all paths and nodes are initialized.
    """
    import asyncio
    import execution
    from nodes import init_extra_nodes
    import server

    # 2. Initialize the server and queue (needed as a dependency for some nodes)
    # We create a new loop each time, as per the original request to keep logic inside the function.
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    server_instance = server.PromptServer(loop)
    execution.PromptQueue(server_instance)

    # 3. Initialize the custom nodes. This will now work because paths are set.
    init_extra_nodes()
    print("Custom nodes initialized.")


from nodes import NODE_CLASS_MAPPINGS

print("import_custom_nodes()")
import_custom_nodes()
print("import_custom_nodes() done")


if "Florence2ModelLoader" in NODE_CLASS_MAPPINGS:
    print("Manually initializing Florence2ModelLoader.INPUT_TYPES() to populate model paths.")
    florence_class = NODE_CLASS_MAPPINGS["Florence2ModelLoader"]
    florence_class.INPUT_TYPES()
# =========================================================================

florence2modelloader = NODE_CLASS_MAPPINGS["Florence2ModelLoader"]()
florence2run = NODE_CLASS_MAPPINGS["Florence2Run"]()
florence2modelloader_204 = florence2modelloader.loadmodel(
    model="Florence-2-base",
    precision="fp16",
    attention="sdpa",
    convert_to_safetensors=False,
)
print("load done: Florence-2-base")


checkpointloadersimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]()
checkpointloadersimple_50 = checkpointloadersimple.load_checkpoint(
    ckpt_name="SD1.5/dreamshaper_8.safetensors"
)
print("load done: dreamshaper_8.safetensors")

cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()

controlnetloader = NODE_CLASS_MAPPINGS["ControlNetLoader"]()
controlnetloader_73 = controlnetloader.load_controlnet(
    control_net_name="SD1.5/control_v11p_sd15_openpose.pth"
)
print("load done: control_v11p_sd15_openpose.pth")

loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()







checkpointloadersimple_319 = checkpointloadersimple.load_checkpoint(
    ckpt_name="SD1.5/dreamshaper_8Inpainting.safetensors"
)
print("load done: dreamshaper_8Inpainting.safetensors")

loraloader = NODE_CLASS_MAPPINGS["LoraLoader"]()
loraloader_338 = loraloader.load_lora(
    lora_name="add_detail.safetensors",
    strength_model=1,
    strength_clip=1,
    model=get_value_at_index(checkpointloadersimple_319, 0),
    clip=get_value_at_index(checkpointloadersimple_319, 1),
)
print("load done: add_detail.safetensors")



loraloader_353 = loraloader.load_lora(
    lora_name="BaldifierW2.safetensors",
    strength_model=2,
    strength_clip=1,
    model=get_value_at_index(loraloader_338, 0),
    clip=get_value_at_index(loraloader_338, 1),
)
print("load done: BaldifierW2.safetensors")

controlnetloader_389 = controlnetloader.load_controlnet(
    control_net_name="SD1.5/control_v11p_sd15_openpose.pth"
)
print("load done: control_v11p_sd15_openpose.pth")

dwpreprocessor = NODE_CLASS_MAPPINGS["DWPreprocessor"]()
controlnetapplyadvanced = NODE_CLASS_MAPPINGS["ControlNetApplyAdvanced"]()

layerutility_imagescalebyaspectratio_v2 = NODE_CLASS_MAPPINGS[
    "LayerUtility: ImageScaleByAspectRatio V2"
]()


layermask_personmaskultra_v2 = NODE_CLASS_MAPPINGS[
    "LayerMask: PersonMaskUltra V2"
]()

growmask = NODE_CLASS_MAPPINGS["GrowMask"]()

inpaintmodelconditioning = NODE_CLASS_MAPPINGS["InpaintModelConditioning"]()
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()


vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]()
faceanalysismodels = NODE_CLASS_MAPPINGS["FaceAnalysisModels"]()
faceanalysismodels_506 = faceanalysismodels.load_models(
    library="insightface", provider="CPU"
)
upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
upscalemodelloader_835 = upscalemodelloader.load_model(
    model_name="4x-UltraSharp.pth"
)
print("load done: UltraSharp.pth")
ipadapterunifiedloader = NODE_CLASS_MAPPINGS["IPAdapterUnifiedLoader"]()
ipadapteradvanced = NODE_CLASS_MAPPINGS["IPAdapterAdvanced"]()
facesegmentation = NODE_CLASS_MAPPINGS["FaceSegmentation"]()
layerutility_imageblend_v2 = NODE_CLASS_MAPPINGS[
    "LayerUtility: ImageBlend V2"
]()
image_comparer_rgthree = NODE_CLASS_MAPPINGS["Image Comparer (rgthree)"]()
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
imageupscalewithmodel = NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]()

print("load done")

model_loaders = [
    checkpointloadersimple_50,
    checkpointloadersimple_319,
    # controlnetloader_73,
    # florence2modelloader_204,
    # loraloader_338,
    # loraloader_353,
    # controlnetloader_389,
    # upscalemodelloader_835
]
print("model_management.load_models_gpu(model_loaders)")
model_management.load_models_gpu([
    loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders
])
print("model_management.load_models_gpu(model_loaders) done")



@spaces.GPU(duration=60)
def generate_image(model_image, hairstyle_template_image):
    with torch.inference_mode():
        cliptextencode_52 = cliptextencode.encode(
            text="multiple_hands, multiple_legs, multiple_girls\nlow quality, blurry, out of focus, distorted, unrealistic, extra limbs, missing limbs, deformed hands, deformed fingers, extra fingers, long neck, unnatural face, bad anatomy, bad proportions, poorly drawn face, poorly drawn eyes, asymmetrical eyes, extra eyes, extra head, floating objects, watermark, text, logo, jpeg artifacts, overexposed, underexposed, harsh lighting, bad posture, strange angles, unnatural expressions, oversaturated colors, messy hair, unrealistic skin texture, wrinkles inappropriately placed, incorrect shading, pixelation, complex background, busy background, detailed background, crowded scene, clutter, messy elements, unnecessary objects, overlapping objects, intricate patterns, vibrant colors, high contrast, graffiti, shadows, reflections, multiple layers, unrealistic lighting, overexposed areas.",
            clip=get_value_at_index(checkpointloadersimple_50, 1),
        )




        loadimage_144 = loadimage.load_image(image=hairstyle_template_image)



        florence2run_203 = florence2run.encode(
            text_input="",
            task="more_detailed_caption",
            fill_mask=True,
            keep_model_loaded=False,
            max_new_tokens=1024,
            num_beams=3,
            do_sample=True,
            output_mask_select="",
            seed=random.randint(1, 2**64),
            image=get_value_at_index(loadimage_144, 0),
            florence2_model=get_value_at_index(florence2modelloader_204, 0),
        )

        cliptextencode_188 = cliptextencode.encode(
            text=get_value_at_index(florence2run_203, 2),
            clip=get_value_at_index(checkpointloadersimple_50, 1),
        )







        cliptextencode_836 = cliptextencode.encode(
            text=" Bald, no hair, small head, small head, nothing around, no light, no highlights, no sunlight,Smooth forehead,No wrinkles",
            clip=get_value_at_index(loraloader_353, 1),
        )

        cliptextencode_321 = cliptextencode.encode(
            text="wrinkles,Big forehead, big head, big back of the head,multiple_hands, multiple_legs, multiple_girls\nlow quality, blurry, out of focus, distorted, unrealistic, extra limbs, missing limbs, deformed hands, deformed fingers, extra fingers, long neck, unnatural face, bad anatomy, bad proportions, poorly drawn face, poorly drawn eyes, asymmetrical eyes, extra eyes, extra head, floating objects, watermark, text, logo, jpeg artifacts, overexposed, underexposed, harsh lighting, bad posture, strange angles, unnatural expressions, oversaturated colors, messy hair, unrealistic skin texture, wrinkles inappropriately placed, incorrect shading, pixelation, complex background, busy background, detailed background, crowded scene, clutter, messy elements, unnecessary objects, overlapping objects, intricate patterns, vibrant colors, high contrast, graffiti, shadows, reflections, multiple layers, unrealistic lighting, overexposed areas.",
            clip=get_value_at_index(loraloader_353, 1),
        )


        loadimage_317 = loadimage.load_image(image=model_image)


        dwpreprocessor_390 = dwpreprocessor.estimate_pose(
            detect_hand="enable",
            detect_body="enable",
            detect_face="enable",
            resolution=768,
            bbox_detector="yolox_l.onnx",
            pose_estimator="dw-ll_ucoco_384_bs5.torchscript.pt",
            scale_stick_for_xinsr_cn="disable",
            image=get_value_at_index(loadimage_317, 0),
        )


        controlnetapplyadvanced_388 = controlnetapplyadvanced.apply_controlnet(
            strength=1,
            start_percent=0,
            end_percent=1,
            positive=get_value_at_index(cliptextencode_836, 0),
            negative=get_value_at_index(cliptextencode_321, 0),
            control_net=get_value_at_index(controlnetloader_389, 0),
            image=get_value_at_index(dwpreprocessor_390, 0),
            vae=get_value_at_index(checkpointloadersimple_319, 2),
        )


        layerutility_imagescalebyaspectratio_v2_331 = (
            layerutility_imagescalebyaspectratio_v2.image_scale_by_aspect_ratio(
                aspect_ratio="original",
                proportional_width=1,
                proportional_height=1,
                fit="letterbox",
                method="lanczos",
                round_to_multiple="8",
                scale_to_side="longest",
                scale_to_length=768,
                background_color="#000000",
                image=get_value_at_index(loadimage_317, 0),
                mask=get_value_at_index(loadimage_317, 1),
            )
        )


        layermask_personmaskultra_v2_327 = (
            layermask_personmaskultra_v2.person_mask_ultra_v2(
                face=False,
                hair=True,
                body=False,
                clothes=False,
                accessories=False,
                background=False,
                confidence=0.4,
                detail_method="VITMatte",
                detail_erode=6,
                detail_dilate=6,
                black_point=0.01,
                white_point=0.99,
                process_detail=True,
                device="cuda",
                max_megapixels=2,
                images=get_value_at_index(
                    layerutility_imagescalebyaspectratio_v2_331, 0
                ),
            )
        )


        growmask_502 = growmask.expand_mask(
            expand=20,
            tapered_corners=True,
            mask=get_value_at_index(layermask_personmaskultra_v2_327, 1),
        )


        inpaintmodelconditioning_330 = inpaintmodelconditioning.encode(
            noise_mask=True,
            positive=get_value_at_index(controlnetapplyadvanced_388, 0),
            negative=get_value_at_index(controlnetapplyadvanced_388, 1),
            vae=get_value_at_index(checkpointloadersimple_319, 2),
            pixels=get_value_at_index(layerutility_imagescalebyaspectratio_v2_331, 0),
            mask=get_value_at_index(growmask_502, 0),
        )


        ksampler_318 = ksampler.sample(
            seed=random.randint(1, 2**64),
            steps=10,
            cfg=2.5,
            sampler_name="euler_ancestral",
            scheduler="normal",
            denoise=1,
            model=get_value_at_index(loraloader_353, 0),
            positive=get_value_at_index(inpaintmodelconditioning_330, 0),
            negative=get_value_at_index(inpaintmodelconditioning_330, 1),
            latent_image=get_value_at_index(inpaintmodelconditioning_330, 2),
        )


        vaedecode_322 = vaedecode.decode(
            samples=get_value_at_index(ksampler_318, 0),
            vae=get_value_at_index(checkpointloadersimple_319, 2),
        )


        vaeencode_191 = vaeencode.encode(
            pixels=get_value_at_index(vaedecode_322, 0),
            vae=get_value_at_index(checkpointloadersimple_50, 2),
        )




        faceanalysismodels_840 = faceanalysismodels.load_models(
            library="insightface", provider="CUDA"
        )



        # for q in range(1):
        ipadapterunifiedloader_90 = ipadapterunifiedloader.load_models(
            preset="PLUS (high strength)",
            model=get_value_at_index(checkpointloadersimple_50, 0),
        )

        layerutility_imagescalebyaspectratio_v2_187 = (
            layerutility_imagescalebyaspectratio_v2.image_scale_by_aspect_ratio(
                aspect_ratio="original",
                proportional_width=132,
                proportional_height=1,
                fit="letterbox",
                method="lanczos",
                round_to_multiple="8",
                scale_to_side="longest",
                scale_to_length=768,
                background_color="#000000",
                image=get_value_at_index(loadimage_144, 0),
            )
        )

        ipadapteradvanced_85 = ipadapteradvanced.apply_ipadapter(
            weight=1,
            weight_type="strong style transfer",
            combine_embeds="concat",
            start_at=0,
            end_at=1,
            embeds_scaling="V only",
            model=get_value_at_index(ipadapterunifiedloader_90, 0),
            ipadapter=get_value_at_index(ipadapterunifiedloader_90, 1),
            image=get_value_at_index(
                layerutility_imagescalebyaspectratio_v2_187, 0
            ),
        )

        dwpreprocessor_72 = dwpreprocessor.estimate_pose(
            detect_hand="enable",
            detect_body="enable",
            detect_face="enable",
            resolution=1024,
            bbox_detector="yolox_l.onnx",
            pose_estimator="dw-ll_ucoco_384_bs5.torchscript.pt",
            scale_stick_for_xinsr_cn="disable",
            image=get_value_at_index(vaedecode_322, 0),
        )

        controlnetapplyadvanced_189 = controlnetapplyadvanced.apply_controlnet(
            strength=1,
            start_percent=0,
            end_percent=1,
            positive=get_value_at_index(cliptextencode_188, 0),
            negative=get_value_at_index(cliptextencode_52, 0),
            control_net=get_value_at_index(controlnetloader_73, 0),
            image=get_value_at_index(dwpreprocessor_72, 0),
            vae=get_value_at_index(checkpointloadersimple_50, 2),
        )

        ksampler_45 = ksampler.sample(
            seed=random.randint(1, 2**64),
            steps=15,
            cfg=1,
            sampler_name="dpmpp_2m",
            scheduler="karras",
            denoise=1,
            model=get_value_at_index(ipadapteradvanced_85, 0),
            positive=get_value_at_index(controlnetapplyadvanced_189, 0),
            negative=get_value_at_index(controlnetapplyadvanced_189, 1),
            latent_image=get_value_at_index(vaeencode_191, 0),
        )

        vaedecode_67 = vaedecode.decode(
            samples=get_value_at_index(ksampler_45, 0),
            vae=get_value_at_index(checkpointloadersimple_50, 2),
        )

        layermask_personmaskultra_v2_192 = (
            layermask_personmaskultra_v2.person_mask_ultra_v2(
                face=False,
                hair=True,
                body=False,
                clothes=False,
                accessories=False,
                background=False,
                confidence=0.4,
                detail_method="VITMatte",
                detail_erode=6,
                detail_dilate=6,
                black_point=0.01,
                white_point=0.99,
                process_detail=True,
                device="cuda",
                max_megapixels=2,
                images=get_value_at_index(vaedecode_67, 0),
            )
        )

        facesegmentation_505 = facesegmentation.segment(
            area="face+forehead (if available)",
            grow=-5,
            grow_tapered=False,
            blur=41,
            analysis_models=get_value_at_index(faceanalysismodels_506, 0),
            image=get_value_at_index(
                layerutility_imagescalebyaspectratio_v2_331, 0
            ),
        )

        growmask_396 = growmask.expand_mask(
            expand=0,
            tapered_corners=True,
            mask=get_value_at_index(facesegmentation_505, 0),
        )

        layerutility_imageblend_v2_399 = layerutility_imageblend_v2.image_blend_v2(
            invert_mask=True,
            blend_mode="normal",
            opacity=100,
            background_image=get_value_at_index(
                layerutility_imagescalebyaspectratio_v2_331, 0
            ),
            layer_image=get_value_at_index(vaedecode_322, 0),
            layer_mask=get_value_at_index(growmask_396, 0),
        )

        layerutility_imageblend_v2_314 = layerutility_imageblend_v2.image_blend_v2(
            invert_mask=True,
            blend_mode="normal",
            opacity=100,
            background_image=get_value_at_index(layerutility_imageblend_v2_399, 0),
            layer_image=get_value_at_index(layermask_personmaskultra_v2_192, 0),
        )

        image_comparer_rgthree_486 = image_comparer_rgthree.compare_images(
            image_a=get_value_at_index(layerutility_imageblend_v2_314, 0),
            image_b=get_value_at_index(
                layerutility_imagescalebyaspectratio_v2_331, 0
            ),
        )

        saveimage_680 = saveimage.save_images(
            filename_prefix="ComfyUI",
            images=get_value_at_index(layerutility_imageblend_v2_314, 0),
        )

        saved_path = f"output/{saveimage_680['ui']['images'][0]['filename']}"


        facesegmentation_838 = facesegmentation.segment(
            area="face+forehead (if available)",
            grow=0,
            grow_tapered=False,
            blur=13,
            analysis_models=get_value_at_index(faceanalysismodels_840, 0),
            image=get_value_at_index(layerutility_imageblend_v2_399, 0),
        )

        growmask_839 = growmask.expand_mask(
            expand=0,
            tapered_corners=True,
            mask=get_value_at_index(facesegmentation_838, 0),
        )

        layerutility_imageblend_v2_686 = layerutility_imageblend_v2.image_blend_v2(
            invert_mask=False,
            blend_mode="normal",
            opacity=100,
            background_image=get_value_at_index(layerutility_imageblend_v2_314, 0),
            layer_image=get_value_at_index(layerutility_imageblend_v2_399, 0),
            layer_mask=get_value_at_index(growmask_839, 0),
        )

        image_comparer_rgthree_820 = image_comparer_rgthree.compare_images(
            image_a=get_value_at_index(layerutility_imageblend_v2_399, 0),
            image_b=get_value_at_index(
                layerutility_imagescalebyaspectratio_v2_331, 0
            ),
        )

        imageupscalewithmodel_831 = imageupscalewithmodel.upscale(
            upscale_model=get_value_at_index(upscalemodelloader_835, 0),
            image=get_value_at_index(layerutility_imageblend_v2_686, 0),
        )

        return saved_path


if __name__ == "__main__":
    # main()

    with gr.Blocks() as app:
        gr.Markdown("# Swap Hairstyle")

        with gr.Row():
            # 添加输入
            with gr.Column():
                with gr.Row():
                    # 第一组包括结构图像和深度强度
                    with gr.Group():
                        model_image = gr.Image(label="Model Image", type="filepath")
                    # 第二组包括风格图像和风格强度
                    with gr.Group():
                        hairstyle_template_image = gr.Image(label="Hairstyle Template Image", type="filepath")
                
            with gr.Column():
                # 输出图像
                output_image = gr.Image(label="Generated Image")
        
        with gr.Row():
            generate_btn = gr.Button("Generate")

        generate_btn.click(
            fn=generate_image,
            inputs=[model_image, hairstyle_template_image],
            outputs=[output_image]
        )
        
        app.launch(share=True)