Spaces:
Runtime error
Runtime error
File size: 28,587 Bytes
4450790 6bc28eb ef7b4df b8da6bf 6a1c163 0013162 4ecc9f3 0013162 3007757 b8da6bf 3007757 b8da6bf 3007757 b8da6bf 3007757 580d7fc 0013162 3007757 0013162 6a1c163 4ecc9f3 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4ecc9f3 4450790 4ecc9f3 4450790 6a1c163 756d16c 4ecc9f3 6a1c163 4ecc9f3 6a1c163 4ecc9f3 6a1c163 756d16c 716a0b4 6a1c163 d92d7f5 fd1c741 6a1c163 fd1c741 4ecc9f3 fd1c741 6a1c163 4ecc9f3 6a1c163 fd1c741 4ecc9f3 fd1c741 6a1c163 fd1c741 4ecc9f3 fd1c741 6a1c163 fd1c741 6a1c163 fd1c741 4ecc9f3 6a1c163 4ecc9f3 6a1c163 a1fd8fe 331cf26 a1fd8fe 4ecc9f3 1fb62f2 4ecc9f3 756d16c 9c6ce70 6bc28eb 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 6a1c163 4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
import spaces
from comfy import model_management
import subprocess
from huggingface_hub import hf_hub_download
from huggingface_hub import snapshot_download
#hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir="models/style_models")
#https://huggingface.co/autismanon/modeldump/blob/main/dreamshaper_8.safetensors
print("dreamshaper_8.safetensors")
hf_hub_download(repo_id="autismanon/modeldump", filename="dreamshaper_8.safetensors", local_dir="models/checkpoints/SD1.5/")
#https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_openpose.pth
print("control_v11p_sd15_openpose.pth")
hf_hub_download(repo_id="lllyasviel/ControlNet-v1-1", filename="control_v11p_sd15_openpose.pth", local_dir="models/controlnet/SD1.5/")
#https://huggingface.co/microsoft/Florence-2-base
print("microsoft/Florence-2-base")
snapshot_download(repo_id="microsoft/Florence-2-base", local_dir="models/LLM/Florence-2-base/")
#https://huggingface.co/ahtoshkaa/Dreamshaper/blob/d4415d1a2644f08ab34bd7adabfbbb70571a782a/dreamshaper_8Inpainting.safetensors
print("dreamshaper_8Inpainting.safetensors")
hf_hub_download(repo_id="ahtoshkaa/Dreamshaper", filename="dreamshaper_8Inpainting.safetensors", local_dir="models/checkpoints/SD1.5/")
#https://huggingface.co/naonovn/Lora/blob/main/add_detail.safetensors
print("add_detail.safetensors")
hf_hub_download(repo_id="naonovn/Lora", filename="add_detail.safetensors", local_dir="models/loras/")
#https://huggingface.co/Dreamspire/BaldifierW2/blob/main/BaldifierW2.safetensors
print("BaldifierW2.safetensors")
hf_hub_download(repo_id="Dreamspire/BaldifierW2", filename="BaldifierW2.safetensors", local_dir="models/loras/")
#https://huggingface.co/lokCX/4x-Ultrasharp/blob/main/4x-UltraSharp.pth
print("UltraSharp.pth")
hf_hub_download(repo_id="lokCX/4x-Ultrasharp", filename="4x-UltraSharp.pth", local_dir="models/upscale_models/")
#./clip_vision/CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors
#https://huggingface.co/h94/IP-Adapter/blob/main/models/image_encoder/model.safetensors
print("CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/image_encoder/model.safetensors", local_dir="models/clip_vision/")
# rename
try:
source_file = "models/clip_vision/models/image_encoder/model.safetensors"
destination_file = "models/clip_vision/CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors"
result = subprocess.run(["mv", source_file, destination_file], check=True, capture_output=True, text=True)
# check=True raises a CalledProcessError if the command fails (returns a non-zero exit code)
# capture_output=True captures stdout and stderr. text=True decodes to string
print(f"Command executed successfully. Return code: {result.returncode}")
print(f"Standard output: {result.stdout}")
print(f"Standard error: {result.stderr}")
except subprocess.CalledProcessError as e:
print(f"Command failed with error code: {e.returncode}")
print(f"Standard output: {e.stdout}")
print(f"Standard error: {e.stderr}")
except FileNotFoundError:
print("Error: The 'mv' command was not found in your system's PATH.")
print("CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors done")
#./ipadapter/ip-adapter_sd15_light_v11.bin
#./ipadapter/ip-adapter_sd15.safetensors
#./ipadapter/ip-adapter-plus-face_sd15.safetensors
#https://huggingface.co/h94/IP-Adapter/blob/main/models/
print("ipadapter")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/ip-adapter_sd15.safetensors", local_dir="models/ipadapter/")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/ip-adapter_sd15_light_v11.bin", local_dir="models/ipadapter/")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/ip-adapter-plus_sd15.safetensors", local_dir="models/ipadapter/")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/ip-adapter-plus-face_sd15.safetensors", local_dir="models/ipadapter/")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/ip-adapter-full-face_sd15.safetensors", local_dir="models/ipadapter/")
hf_hub_download(repo_id="h94/IP-Adapter", filename="models/ip-adapter_sd15_vit-G.safetensors", local_dir="models/ipadapter/")
# rename
try:
source_file = "models/ipadapter/models/*"
destination_file = "models/ipadapter/"
result = subprocess.run(["mv", source_file, destination_file], check=True, capture_output=True, text=True)
# check=True raises a CalledProcessError if the command fails (returns a non-zero exit code)
# capture_output=True captures stdout and stderr. text=True decodes to string
print(f"Command executed successfully. Return code: {result.returncode}")
print(f"Standard output: {result.stdout}")
print(f"Standard error: {result.stderr}")
except subprocess.CalledProcessError as e:
print(f"Command failed with error code: {e.returncode}")
print(f"Standard output: {e.stdout}")
print(f"Standard error: {e.stderr}")
except FileNotFoundError:
print("Error: The 'mv' command was not found in your system's PATH.")
print("ipadapter done")
#download auto when startup
#./insightface/models/buffalo_l/w600k_r50.onnx
#./insightface/models/buffalo_l/det_10g.onnx
#./insightface/models/buffalo_l/2d106det.onnx
#./insightface/models/buffalo_l/1k3d68.onnx
#./insightface/models/buffalo_l/genderage.onnx
#./annotator/yzd-v/DWPose/yolox_l.onnx
print("UltraSharp.pth")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
# MODIFIED FUNCTION - THE CORE FIX IS HERE
def import_custom_nodes() -> None:
"""
This function now correctly mimics the necessary parts of ComfyUI's startup
to ensure all paths and nodes are initialized.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# 2. Initialize the server and queue (needed as a dependency for some nodes)
# We create a new loop each time, as per the original request to keep logic inside the function.
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# 3. Initialize the custom nodes. This will now work because paths are set.
init_extra_nodes()
print("Custom nodes initialized.")
from nodes import NODE_CLASS_MAPPINGS
print("import_custom_nodes()")
import_custom_nodes()
print("import_custom_nodes() done")
if "Florence2ModelLoader" in NODE_CLASS_MAPPINGS:
print("Manually initializing Florence2ModelLoader.INPUT_TYPES() to populate model paths.")
florence_class = NODE_CLASS_MAPPINGS["Florence2ModelLoader"]
florence_class.INPUT_TYPES()
# =========================================================================
florence2modelloader = NODE_CLASS_MAPPINGS["Florence2ModelLoader"]()
florence2run = NODE_CLASS_MAPPINGS["Florence2Run"]()
florence2modelloader_204 = florence2modelloader.loadmodel(
model="Florence-2-base",
precision="fp16",
attention="sdpa",
convert_to_safetensors=False,
)
print("load done: Florence-2-base")
checkpointloadersimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]()
checkpointloadersimple_50 = checkpointloadersimple.load_checkpoint(
ckpt_name="SD1.5/dreamshaper_8.safetensors"
)
print("load done: dreamshaper_8.safetensors")
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
controlnetloader = NODE_CLASS_MAPPINGS["ControlNetLoader"]()
controlnetloader_73 = controlnetloader.load_controlnet(
control_net_name="SD1.5/control_v11p_sd15_openpose.pth"
)
print("load done: control_v11p_sd15_openpose.pth")
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
checkpointloadersimple_319 = checkpointloadersimple.load_checkpoint(
ckpt_name="SD1.5/dreamshaper_8Inpainting.safetensors"
)
print("load done: dreamshaper_8Inpainting.safetensors")
loraloader = NODE_CLASS_MAPPINGS["LoraLoader"]()
loraloader_338 = loraloader.load_lora(
lora_name="add_detail.safetensors",
strength_model=1,
strength_clip=1,
model=get_value_at_index(checkpointloadersimple_319, 0),
clip=get_value_at_index(checkpointloadersimple_319, 1),
)
print("load done: add_detail.safetensors")
loraloader_353 = loraloader.load_lora(
lora_name="BaldifierW2.safetensors",
strength_model=2,
strength_clip=1,
model=get_value_at_index(loraloader_338, 0),
clip=get_value_at_index(loraloader_338, 1),
)
print("load done: BaldifierW2.safetensors")
controlnetloader_389 = controlnetloader.load_controlnet(
control_net_name="SD1.5/control_v11p_sd15_openpose.pth"
)
print("load done: control_v11p_sd15_openpose.pth")
dwpreprocessor = NODE_CLASS_MAPPINGS["DWPreprocessor"]()
controlnetapplyadvanced = NODE_CLASS_MAPPINGS["ControlNetApplyAdvanced"]()
layerutility_imagescalebyaspectratio_v2 = NODE_CLASS_MAPPINGS[
"LayerUtility: ImageScaleByAspectRatio V2"
]()
layermask_personmaskultra_v2 = NODE_CLASS_MAPPINGS[
"LayerMask: PersonMaskUltra V2"
]()
growmask = NODE_CLASS_MAPPINGS["GrowMask"]()
inpaintmodelconditioning = NODE_CLASS_MAPPINGS["InpaintModelConditioning"]()
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]()
faceanalysismodels = NODE_CLASS_MAPPINGS["FaceAnalysisModels"]()
faceanalysismodels_506 = faceanalysismodels.load_models(
library="insightface", provider="CPU"
)
upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
upscalemodelloader_835 = upscalemodelloader.load_model(
model_name="4x-UltraSharp.pth"
)
print("load done: UltraSharp.pth")
ipadapterunifiedloader = NODE_CLASS_MAPPINGS["IPAdapterUnifiedLoader"]()
ipadapteradvanced = NODE_CLASS_MAPPINGS["IPAdapterAdvanced"]()
facesegmentation = NODE_CLASS_MAPPINGS["FaceSegmentation"]()
layerutility_imageblend_v2 = NODE_CLASS_MAPPINGS[
"LayerUtility: ImageBlend V2"
]()
image_comparer_rgthree = NODE_CLASS_MAPPINGS["Image Comparer (rgthree)"]()
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
imageupscalewithmodel = NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]()
print("load done")
model_loaders = [
checkpointloadersimple_50,
checkpointloadersimple_319,
# controlnetloader_73,
# florence2modelloader_204,
# loraloader_338,
# loraloader_353,
# controlnetloader_389,
# upscalemodelloader_835
]
print("model_management.load_models_gpu(model_loaders)")
model_management.load_models_gpu([
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders
])
print("model_management.load_models_gpu(model_loaders) done")
@spaces.GPU(duration=60)
def generate_image(model_image, hairstyle_template_image):
with torch.inference_mode():
cliptextencode_52 = cliptextencode.encode(
text="multiple_hands, multiple_legs, multiple_girls\nlow quality, blurry, out of focus, distorted, unrealistic, extra limbs, missing limbs, deformed hands, deformed fingers, extra fingers, long neck, unnatural face, bad anatomy, bad proportions, poorly drawn face, poorly drawn eyes, asymmetrical eyes, extra eyes, extra head, floating objects, watermark, text, logo, jpeg artifacts, overexposed, underexposed, harsh lighting, bad posture, strange angles, unnatural expressions, oversaturated colors, messy hair, unrealistic skin texture, wrinkles inappropriately placed, incorrect shading, pixelation, complex background, busy background, detailed background, crowded scene, clutter, messy elements, unnecessary objects, overlapping objects, intricate patterns, vibrant colors, high contrast, graffiti, shadows, reflections, multiple layers, unrealistic lighting, overexposed areas.",
clip=get_value_at_index(checkpointloadersimple_50, 1),
)
loadimage_144 = loadimage.load_image(image=hairstyle_template_image)
florence2run_203 = florence2run.encode(
text_input="",
task="more_detailed_caption",
fill_mask=True,
keep_model_loaded=False,
max_new_tokens=1024,
num_beams=3,
do_sample=True,
output_mask_select="",
seed=random.randint(1, 2**64),
image=get_value_at_index(loadimage_144, 0),
florence2_model=get_value_at_index(florence2modelloader_204, 0),
)
cliptextencode_188 = cliptextencode.encode(
text=get_value_at_index(florence2run_203, 2),
clip=get_value_at_index(checkpointloadersimple_50, 1),
)
cliptextencode_836 = cliptextencode.encode(
text=" Bald, no hair, small head, small head, nothing around, no light, no highlights, no sunlight,Smooth forehead,No wrinkles",
clip=get_value_at_index(loraloader_353, 1),
)
cliptextencode_321 = cliptextencode.encode(
text="wrinkles,Big forehead, big head, big back of the head,multiple_hands, multiple_legs, multiple_girls\nlow quality, blurry, out of focus, distorted, unrealistic, extra limbs, missing limbs, deformed hands, deformed fingers, extra fingers, long neck, unnatural face, bad anatomy, bad proportions, poorly drawn face, poorly drawn eyes, asymmetrical eyes, extra eyes, extra head, floating objects, watermark, text, logo, jpeg artifacts, overexposed, underexposed, harsh lighting, bad posture, strange angles, unnatural expressions, oversaturated colors, messy hair, unrealistic skin texture, wrinkles inappropriately placed, incorrect shading, pixelation, complex background, busy background, detailed background, crowded scene, clutter, messy elements, unnecessary objects, overlapping objects, intricate patterns, vibrant colors, high contrast, graffiti, shadows, reflections, multiple layers, unrealistic lighting, overexposed areas.",
clip=get_value_at_index(loraloader_353, 1),
)
loadimage_317 = loadimage.load_image(image=model_image)
dwpreprocessor_390 = dwpreprocessor.estimate_pose(
detect_hand="enable",
detect_body="enable",
detect_face="enable",
resolution=768,
bbox_detector="yolox_l.onnx",
pose_estimator="dw-ll_ucoco_384_bs5.torchscript.pt",
scale_stick_for_xinsr_cn="disable",
image=get_value_at_index(loadimage_317, 0),
)
controlnetapplyadvanced_388 = controlnetapplyadvanced.apply_controlnet(
strength=1,
start_percent=0,
end_percent=1,
positive=get_value_at_index(cliptextencode_836, 0),
negative=get_value_at_index(cliptextencode_321, 0),
control_net=get_value_at_index(controlnetloader_389, 0),
image=get_value_at_index(dwpreprocessor_390, 0),
vae=get_value_at_index(checkpointloadersimple_319, 2),
)
layerutility_imagescalebyaspectratio_v2_331 = (
layerutility_imagescalebyaspectratio_v2.image_scale_by_aspect_ratio(
aspect_ratio="original",
proportional_width=1,
proportional_height=1,
fit="letterbox",
method="lanczos",
round_to_multiple="8",
scale_to_side="longest",
scale_to_length=768,
background_color="#000000",
image=get_value_at_index(loadimage_317, 0),
mask=get_value_at_index(loadimage_317, 1),
)
)
layermask_personmaskultra_v2_327 = (
layermask_personmaskultra_v2.person_mask_ultra_v2(
face=False,
hair=True,
body=False,
clothes=False,
accessories=False,
background=False,
confidence=0.4,
detail_method="VITMatte",
detail_erode=6,
detail_dilate=6,
black_point=0.01,
white_point=0.99,
process_detail=True,
device="cuda",
max_megapixels=2,
images=get_value_at_index(
layerutility_imagescalebyaspectratio_v2_331, 0
),
)
)
growmask_502 = growmask.expand_mask(
expand=20,
tapered_corners=True,
mask=get_value_at_index(layermask_personmaskultra_v2_327, 1),
)
inpaintmodelconditioning_330 = inpaintmodelconditioning.encode(
noise_mask=True,
positive=get_value_at_index(controlnetapplyadvanced_388, 0),
negative=get_value_at_index(controlnetapplyadvanced_388, 1),
vae=get_value_at_index(checkpointloadersimple_319, 2),
pixels=get_value_at_index(layerutility_imagescalebyaspectratio_v2_331, 0),
mask=get_value_at_index(growmask_502, 0),
)
ksampler_318 = ksampler.sample(
seed=random.randint(1, 2**64),
steps=10,
cfg=2.5,
sampler_name="euler_ancestral",
scheduler="normal",
denoise=1,
model=get_value_at_index(loraloader_353, 0),
positive=get_value_at_index(inpaintmodelconditioning_330, 0),
negative=get_value_at_index(inpaintmodelconditioning_330, 1),
latent_image=get_value_at_index(inpaintmodelconditioning_330, 2),
)
vaedecode_322 = vaedecode.decode(
samples=get_value_at_index(ksampler_318, 0),
vae=get_value_at_index(checkpointloadersimple_319, 2),
)
vaeencode_191 = vaeencode.encode(
pixels=get_value_at_index(vaedecode_322, 0),
vae=get_value_at_index(checkpointloadersimple_50, 2),
)
faceanalysismodels_840 = faceanalysismodels.load_models(
library="insightface", provider="CUDA"
)
# for q in range(1):
ipadapterunifiedloader_90 = ipadapterunifiedloader.load_models(
preset="PLUS (high strength)",
model=get_value_at_index(checkpointloadersimple_50, 0),
)
layerutility_imagescalebyaspectratio_v2_187 = (
layerutility_imagescalebyaspectratio_v2.image_scale_by_aspect_ratio(
aspect_ratio="original",
proportional_width=132,
proportional_height=1,
fit="letterbox",
method="lanczos",
round_to_multiple="8",
scale_to_side="longest",
scale_to_length=768,
background_color="#000000",
image=get_value_at_index(loadimage_144, 0),
)
)
ipadapteradvanced_85 = ipadapteradvanced.apply_ipadapter(
weight=1,
weight_type="strong style transfer",
combine_embeds="concat",
start_at=0,
end_at=1,
embeds_scaling="V only",
model=get_value_at_index(ipadapterunifiedloader_90, 0),
ipadapter=get_value_at_index(ipadapterunifiedloader_90, 1),
image=get_value_at_index(
layerutility_imagescalebyaspectratio_v2_187, 0
),
)
dwpreprocessor_72 = dwpreprocessor.estimate_pose(
detect_hand="enable",
detect_body="enable",
detect_face="enable",
resolution=1024,
bbox_detector="yolox_l.onnx",
pose_estimator="dw-ll_ucoco_384_bs5.torchscript.pt",
scale_stick_for_xinsr_cn="disable",
image=get_value_at_index(vaedecode_322, 0),
)
controlnetapplyadvanced_189 = controlnetapplyadvanced.apply_controlnet(
strength=1,
start_percent=0,
end_percent=1,
positive=get_value_at_index(cliptextencode_188, 0),
negative=get_value_at_index(cliptextencode_52, 0),
control_net=get_value_at_index(controlnetloader_73, 0),
image=get_value_at_index(dwpreprocessor_72, 0),
vae=get_value_at_index(checkpointloadersimple_50, 2),
)
ksampler_45 = ksampler.sample(
seed=random.randint(1, 2**64),
steps=15,
cfg=1,
sampler_name="dpmpp_2m",
scheduler="karras",
denoise=1,
model=get_value_at_index(ipadapteradvanced_85, 0),
positive=get_value_at_index(controlnetapplyadvanced_189, 0),
negative=get_value_at_index(controlnetapplyadvanced_189, 1),
latent_image=get_value_at_index(vaeencode_191, 0),
)
vaedecode_67 = vaedecode.decode(
samples=get_value_at_index(ksampler_45, 0),
vae=get_value_at_index(checkpointloadersimple_50, 2),
)
layermask_personmaskultra_v2_192 = (
layermask_personmaskultra_v2.person_mask_ultra_v2(
face=False,
hair=True,
body=False,
clothes=False,
accessories=False,
background=False,
confidence=0.4,
detail_method="VITMatte",
detail_erode=6,
detail_dilate=6,
black_point=0.01,
white_point=0.99,
process_detail=True,
device="cuda",
max_megapixels=2,
images=get_value_at_index(vaedecode_67, 0),
)
)
facesegmentation_505 = facesegmentation.segment(
area="face+forehead (if available)",
grow=-5,
grow_tapered=False,
blur=41,
analysis_models=get_value_at_index(faceanalysismodels_506, 0),
image=get_value_at_index(
layerutility_imagescalebyaspectratio_v2_331, 0
),
)
growmask_396 = growmask.expand_mask(
expand=0,
tapered_corners=True,
mask=get_value_at_index(facesegmentation_505, 0),
)
layerutility_imageblend_v2_399 = layerutility_imageblend_v2.image_blend_v2(
invert_mask=True,
blend_mode="normal",
opacity=100,
background_image=get_value_at_index(
layerutility_imagescalebyaspectratio_v2_331, 0
),
layer_image=get_value_at_index(vaedecode_322, 0),
layer_mask=get_value_at_index(growmask_396, 0),
)
layerutility_imageblend_v2_314 = layerutility_imageblend_v2.image_blend_v2(
invert_mask=True,
blend_mode="normal",
opacity=100,
background_image=get_value_at_index(layerutility_imageblend_v2_399, 0),
layer_image=get_value_at_index(layermask_personmaskultra_v2_192, 0),
)
image_comparer_rgthree_486 = image_comparer_rgthree.compare_images(
image_a=get_value_at_index(layerutility_imageblend_v2_314, 0),
image_b=get_value_at_index(
layerutility_imagescalebyaspectratio_v2_331, 0
),
)
saveimage_680 = saveimage.save_images(
filename_prefix="ComfyUI",
images=get_value_at_index(layerutility_imageblend_v2_314, 0),
)
saved_path = f"output/{saveimage_680['ui']['images'][0]['filename']}"
facesegmentation_838 = facesegmentation.segment(
area="face+forehead (if available)",
grow=0,
grow_tapered=False,
blur=13,
analysis_models=get_value_at_index(faceanalysismodels_840, 0),
image=get_value_at_index(layerutility_imageblend_v2_399, 0),
)
growmask_839 = growmask.expand_mask(
expand=0,
tapered_corners=True,
mask=get_value_at_index(facesegmentation_838, 0),
)
layerutility_imageblend_v2_686 = layerutility_imageblend_v2.image_blend_v2(
invert_mask=False,
blend_mode="normal",
opacity=100,
background_image=get_value_at_index(layerutility_imageblend_v2_314, 0),
layer_image=get_value_at_index(layerutility_imageblend_v2_399, 0),
layer_mask=get_value_at_index(growmask_839, 0),
)
image_comparer_rgthree_820 = image_comparer_rgthree.compare_images(
image_a=get_value_at_index(layerutility_imageblend_v2_399, 0),
image_b=get_value_at_index(
layerutility_imagescalebyaspectratio_v2_331, 0
),
)
imageupscalewithmodel_831 = imageupscalewithmodel.upscale(
upscale_model=get_value_at_index(upscalemodelloader_835, 0),
image=get_value_at_index(layerutility_imageblend_v2_686, 0),
)
return saved_path
if __name__ == "__main__":
# main()
with gr.Blocks() as app:
gr.Markdown("# Swap Hairstyle")
with gr.Row():
# 添加输入
with gr.Column():
with gr.Row():
# 第一组包括结构图像和深度强度
with gr.Group():
model_image = gr.Image(label="Model Image", type="filepath")
# 第二组包括风格图像和风格强度
with gr.Group():
hairstyle_template_image = gr.Image(label="Hairstyle Template Image", type="filepath")
with gr.Column():
# 输出图像
output_image = gr.Image(label="Generated Image")
with gr.Row():
generate_btn = gr.Button("Generate")
generate_btn.click(
fn=generate_image,
inputs=[model_image, hairstyle_template_image],
outputs=[output_image]
)
app.launch(share=True)
|