Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import pytubefix as pt | |
import os, time, librosa, torch | |
from pyannote.audio import Pipeline | |
from transformers import pipeline | |
import spaces | |
def second_to_timecode(x: float) -> str: | |
"""Float x second to HH:MM:SS.DDD format.""" | |
hour, x = divmod(x, 3600) | |
minute, x = divmod(x, 60) | |
second, x = divmod(x, 1) | |
millisecond = int(x * 1000.) | |
return '%.2d:%.2d:%.2d,%.3d' % (hour, minute, second, millisecond) | |
def download_from_youtube(youtube_link: str) -> str: | |
yt = pt.YouTube(youtube_link) | |
available_streams = yt.streams.filter(only_audio=True) | |
print('available streams:') | |
print(available_streams) | |
stream = available_streams.first() | |
# , audio_codec='wav' | |
stream.download(filename="audio.wav") | |
return "audio.wav" | |
MODEL_NAME = 'Dorjzodovsuren/whisper-large-v2-mn' | |
#MODEL_NAME = 'Dorjzodovsuren/whisper-large-v3-turbo-mn-2' | |
lang = 'mn' | |
chunk_length_s = 9 | |
vad_activation_min_duration = 9 # sec | |
device = 0 if torch.cuda.is_available() else "cpu" | |
SAMPLE_RATE = 16_000 | |
######## LOAD MODELS FROM HUB ######## | |
dia_model = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=os.environ['TOKEN']) | |
vad_model = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token=os.environ['TOKEN']) | |
import torch | |
from transformers import pipeline | |
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq | |
if MODEL_NAME == 'Dorjzodovsuren/whisper-large-v2-mn': | |
processor = AutoProcessor.from_pretrained(MODEL_NAME) | |
else: | |
processor = AutoProcessor.from_pretrained("openai/whisper-large-v3-turbo") | |
model = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_NAME) | |
asr_pipeline = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
chunk_length_s=chunk_length_s, | |
device_map="auto" | |
) | |
lang = 'mn' | |
asr_pipeline.model.config.forced_decoder_ids = asr_pipeline.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") | |
print("----------> Loaded models <-----------") | |
gpu_timeout = int(os.getenv("GPU_TIMEOUT", 60)) | |
def generator(microphone, file_upload, num_speakers, max_duration, history): | |
history = history or "" | |
if microphone: | |
path = microphone | |
elif file_upload: | |
path = file_upload | |
waveform, sampling_rate = librosa.load(path, sr=SAMPLE_RATE, mono=True, duration=max_duration) | |
print(waveform.shape, sampling_rate) | |
waveform_tensor = torch.unsqueeze(torch.tensor(waveform), 0).to(device) | |
dia_result = dia_model({ | |
"waveform": waveform_tensor, | |
"sample_rate": sampling_rate, | |
}, num_speakers=num_speakers) | |
counter = 1 | |
for speech_turn, track, speaker in dia_result.itertracks(yield_label=True): | |
print(f"{speech_turn.start:4.1f} {speech_turn.end:4.1f} {speaker}") | |
_start = int(sampling_rate * speech_turn.start) | |
_end = int(sampling_rate * speech_turn.end) | |
data = waveform[_start: _end] | |
if speech_turn.end - speech_turn.start > vad_activation_min_duration: | |
print(f'audio duration {speech_turn.end - speech_turn.start} sec ----> activating VAD') | |
vad_output = vad_model({ | |
'waveform': waveform_tensor[:, _start:_end], | |
'sample_rate': sampling_rate}) | |
for vad_turn in vad_output.get_timeline().support(): | |
vad_start = _start + int(sampling_rate * vad_turn.start) | |
vad_end = _start + int(sampling_rate * vad_turn.end) | |
prediction = asr_pipeline(waveform[vad_start: vad_end])['text'] | |
history += f"{counter}\n" + \ | |
f"{second_to_timecode(speech_turn.start + vad_turn.start)} --> {second_to_timecode(speech_turn.start + vad_turn.end)}\n" + \ | |
f"{prediction}\n\n" | |
# f">> {speaker}: {prediction}\n\n" | |
yield history, history, None | |
counter += 1 | |
else: | |
prediction = asr_pipeline(data)['text'] | |
history += f"{counter}\n" + \ | |
f"{second_to_timecode(speech_turn.start)} --> {second_to_timecode(speech_turn.end)}\n" + \ | |
f"{prediction}\n\n" | |
# f">> {speaker}: {prediction}\n\n" | |
counter += 1 | |
yield history, history, None | |
# https://support.google.com/youtube/answer/2734698?hl=en#zippy=%2Cbasic-file-formats%2Csubrip-srt-example%2Csubviewer-sbv-example | |
file_name = 'transcript.srt' | |
with open(file_name, 'w') as fp: | |
fp.write(history) | |
yield history, history, file_name | |
demo = gr.Interface( | |
generator, | |
inputs=[ | |
gr.Audio(type="filepath"), | |
gr.Audio(type="filepath"), | |
gr.Number(value=1, label="Number of Speakers"), | |
gr.Number(value=120, label="Maximum Duration (Seconds)"), | |
'state', | |
], | |
outputs=['text', 'state', 'file'], | |
title="Mongolian Whisper 🇲🇳", | |
description=( | |
"Transcribe Microphone / Uploaded File in Mongolian Whisper Model." | |
), | |
allow_flagging="never", | |
) | |
# define queue - required for generators | |
demo.queue() | |
demo.launch(debug=True) |