Spaces:
Runtime error
Runtime error
File size: 5,399 Bytes
2a5aa2b 60a396e 2a5aa2b 35b0ccd 12587db 2a5aa2b ca01eaa 2a5aa2b 35b0ccd 12587db 2a5aa2b f7db5f2 2a5aa2b 60a396e 2a5aa2b 60a396e 57e1623 2a5aa2b 12587db 57e1623 12587db 57e1623 12587db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import gradio as gr
import numpy as np
import pytubefix as pt
import os, time, librosa, torch
from pyannote.audio import Pipeline
from transformers import pipeline
import spaces
def second_to_timecode(x: float) -> str:
"""Float x second to HH:MM:SS.DDD format."""
hour, x = divmod(x, 3600)
minute, x = divmod(x, 60)
second, x = divmod(x, 1)
millisecond = int(x * 1000.)
return '%.2d:%.2d:%.2d,%.3d' % (hour, minute, second, millisecond)
def download_from_youtube(youtube_link: str) -> str:
yt = pt.YouTube(youtube_link)
available_streams = yt.streams.filter(only_audio=True)
print('available streams:')
print(available_streams)
stream = available_streams.first()
# , audio_codec='wav'
stream.download(filename="audio.wav")
return "audio.wav"
MODEL_NAME = 'Dorjzodovsuren/whisper-large-v2-mn'
#MODEL_NAME = 'Dorjzodovsuren/whisper-large-v3-turbo-mn-2'
lang = 'mn'
chunk_length_s = 9
vad_activation_min_duration = 9 # sec
device = 0 if torch.cuda.is_available() else "cpu"
SAMPLE_RATE = 16_000
######## LOAD MODELS FROM HUB ########
dia_model = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=os.environ['TOKEN'])
vad_model = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token=os.environ['TOKEN'])
dia_model = dia_model.to(torch.device('cuda'))
vad_model = vad_model.to(torch.device('cuda'))
import torch
from transformers import pipeline
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
if MODEL_NAME == 'Dorjzodovsuren/whisper-large-v2-mn':
processor = AutoProcessor.from_pretrained(MODEL_NAME)
else:
processor = AutoProcessor.from_pretrained("openai/whisper-large-v3-turbo")
model = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_NAME)
asr_pipeline = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=chunk_length_s,
device_map="auto"
)
lang = 'mn'
asr_pipeline.model.config.forced_decoder_ids = asr_pipeline.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
print("----------> Loaded models <-----------")
gpu_timeout = int(os.getenv("GPU_TIMEOUT", 60))
@spaces.GPU(duration=gpu_timeout)
def generator(microphone, file_upload, num_speakers, max_duration, history):
history = history or ""
if microphone:
path = microphone
elif file_upload:
path = file_upload
waveform, sampling_rate = librosa.load(path, sr=SAMPLE_RATE, mono=True, duration=max_duration)
print(waveform.shape, sampling_rate)
waveform_tensor = torch.unsqueeze(torch.tensor(waveform), 0).to(device)
dia_result = dia_model({
"waveform": waveform_tensor,
"sample_rate": sampling_rate,
}, num_speakers=num_speakers)
counter = 1
for speech_turn, track, speaker in dia_result.itertracks(yield_label=True):
print(f"{speech_turn.start:4.1f} {speech_turn.end:4.1f} {speaker}")
_start = int(sampling_rate * speech_turn.start)
_end = int(sampling_rate * speech_turn.end)
data = waveform[_start: _end]
if speech_turn.end - speech_turn.start > vad_activation_min_duration:
print(f'audio duration {speech_turn.end - speech_turn.start} sec ----> activating VAD')
vad_output = vad_model({
'waveform': waveform_tensor[:, _start:_end],
'sample_rate': sampling_rate})
for vad_turn in vad_output.get_timeline().support():
vad_start = _start + int(sampling_rate * vad_turn.start)
vad_end = _start + int(sampling_rate * vad_turn.end)
prediction = asr_pipeline(waveform[vad_start: vad_end])['text']
history += f"{counter}\n" + \
f"{second_to_timecode(speech_turn.start + vad_turn.start)} --> {second_to_timecode(speech_turn.start + vad_turn.end)}\n" + \
f"{prediction}\n\n"
# f">> {speaker}: {prediction}\n\n"
yield history, history, None
counter += 1
else:
prediction = asr_pipeline(data)['text']
history += f"{counter}\n" + \
f"{second_to_timecode(speech_turn.start)} --> {second_to_timecode(speech_turn.end)}\n" + \
f"{prediction}\n\n"
# f">> {speaker}: {prediction}\n\n"
counter += 1
yield history, history, None
# https://support.google.com/youtube/answer/2734698?hl=en#zippy=%2Cbasic-file-formats%2Csubrip-srt-example%2Csubviewer-sbv-example
file_name = 'transcript.srt'
with open(file_name, 'w') as fp:
fp.write(history)
yield history, history, file_name
demo = gr.Interface(
generator,
inputs=[
gr.Audio(type="filepath"),
gr.Audio(type="filepath"),
gr.Number(value=1, label="Number of Speakers"),
gr.Number(value=120, label="Maximum Duration (Seconds)"),
'state',
],
outputs=['text', 'state', 'file'],
title="Mongolian Whisper 🇲🇳",
description=(
"Transcribe Microphone / Uploaded File in Mongolian Whisper Model."
),
allow_flagging="never",
)
# define queue - required for generators
demo.queue()
demo.launch(debug=True) |