File size: 5,399 Bytes
2a5aa2b
 
 
 
 
 
60a396e
2a5aa2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b0ccd
12587db
2a5aa2b
 
 
 
 
 
 
 
 
 
 
ca01eaa
 
 
2a5aa2b
 
 
 
35b0ccd
12587db
2a5aa2b
 
 
 
f7db5f2
2a5aa2b
 
 
 
 
 
 
60a396e
2a5aa2b
 
 
 
 
 
 
60a396e
 
57e1623
2a5aa2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12587db
 
 
 
 
 
 
 
 
 
 
 
 
57e1623
12587db
57e1623
12587db
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr 
import numpy as np
import pytubefix as pt
import os, time, librosa, torch
from pyannote.audio import Pipeline
from transformers import pipeline
import spaces


def second_to_timecode(x: float) -> str:
    """Float x second to HH:MM:SS.DDD format."""
    hour, x = divmod(x, 3600)
    minute, x = divmod(x, 60)
    second, x = divmod(x, 1)
    millisecond = int(x * 1000.)

    return '%.2d:%.2d:%.2d,%.3d' % (hour, minute, second, millisecond)


def download_from_youtube(youtube_link: str) -> str:
    yt = pt.YouTube(youtube_link)
    available_streams = yt.streams.filter(only_audio=True)
    print('available streams:')
    print(available_streams)
    stream = available_streams.first()
    # , audio_codec='wav'
    
    stream.download(filename="audio.wav")
    return "audio.wav"


MODEL_NAME = 'Dorjzodovsuren/whisper-large-v2-mn'
#MODEL_NAME = 'Dorjzodovsuren/whisper-large-v3-turbo-mn-2'
lang = 'mn'

chunk_length_s = 9
vad_activation_min_duration = 9 # sec
device = 0 if torch.cuda.is_available() else "cpu"
SAMPLE_RATE = 16_000

######## LOAD MODELS FROM HUB ########
dia_model = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=os.environ['TOKEN'])
vad_model = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token=os.environ['TOKEN'])

dia_model = dia_model.to(torch.device('cuda'))
vad_model = vad_model.to(torch.device('cuda'))

import torch
from transformers import pipeline
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq

if MODEL_NAME == 'Dorjzodovsuren/whisper-large-v2-mn':
  processor = AutoProcessor.from_pretrained(MODEL_NAME)

else:
  processor = AutoProcessor.from_pretrained("openai/whisper-large-v3-turbo")

model = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_NAME)

asr_pipeline = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    chunk_length_s=chunk_length_s, 
    device_map="auto"
)

lang = 'mn'
asr_pipeline.model.config.forced_decoder_ids = asr_pipeline.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")

print("----------> Loaded models <-----------")

gpu_timeout = int(os.getenv("GPU_TIMEOUT", 60))
@spaces.GPU(duration=gpu_timeout)
def generator(microphone, file_upload, num_speakers, max_duration, history):
    history = history or ""
    
    if microphone:
        path = microphone
    elif file_upload:
        path = file_upload
    
    waveform, sampling_rate = librosa.load(path, sr=SAMPLE_RATE, mono=True, duration=max_duration)

    print(waveform.shape, sampling_rate)
    waveform_tensor = torch.unsqueeze(torch.tensor(waveform), 0).to(device)

    dia_result = dia_model({
        "waveform": waveform_tensor,
        "sample_rate": sampling_rate,
    }, num_speakers=num_speakers)

    counter = 1
    
    for speech_turn, track, speaker in dia_result.itertracks(yield_label=True):
        print(f"{speech_turn.start:4.1f} {speech_turn.end:4.1f} {speaker}")
        _start = int(sampling_rate * speech_turn.start)
        _end = int(sampling_rate * speech_turn.end)
        data = waveform[_start: _end]

        if speech_turn.end - speech_turn.start > vad_activation_min_duration:
            print(f'audio duration {speech_turn.end - speech_turn.start} sec ----> activating VAD')
            vad_output = vad_model({
                'waveform': waveform_tensor[:, _start:_end],
                'sample_rate': sampling_rate})
            for vad_turn in vad_output.get_timeline().support():
                vad_start = _start + int(sampling_rate * vad_turn.start)
                vad_end = _start + int(sampling_rate * vad_turn.end)
                prediction = asr_pipeline(waveform[vad_start: vad_end])['text']
                history +=  f"{counter}\n" + \
                            f"{second_to_timecode(speech_turn.start + vad_turn.start)} --> {second_to_timecode(speech_turn.start + vad_turn.end)}\n" + \
                            f"{prediction}\n\n"
                            # f">> {speaker}: {prediction}\n\n"
                yield history, history, None
                counter += 1

        else:
            prediction = asr_pipeline(data)['text']
            history +=  f"{counter}\n" + \
                        f"{second_to_timecode(speech_turn.start)} --> {second_to_timecode(speech_turn.end)}\n" + \
                        f"{prediction}\n\n"
                        # f">> {speaker}: {prediction}\n\n"
            counter += 1
            yield history, history, None
    
    # https://support.google.com/youtube/answer/2734698?hl=en#zippy=%2Cbasic-file-formats%2Csubrip-srt-example%2Csubviewer-sbv-example
    file_name = 'transcript.srt'
    with open(file_name, 'w') as fp:
        fp.write(history)
    
    yield history, history, file_name


demo = gr.Interface(
    generator, 
    inputs=[
        gr.Audio(type="filepath"),
        gr.Audio(type="filepath"),
        gr.Number(value=1, label="Number of Speakers"),
        gr.Number(value=120, label="Maximum Duration (Seconds)"),
        'state',
    ],
    outputs=['text', 'state', 'file'],
    title="Mongolian Whisper 🇲🇳",
    description=(
        "Transcribe Microphone / Uploaded File in Mongolian Whisper Model."
    ),
    allow_flagging="never",
)

# define queue - required for generators
demo.queue()

demo.launch(debug=True)