Spaces:
Runtime error
Runtime error
File size: 6,174 Bytes
2a5aa2b 60a396e 2a5aa2b 12587db 2a5aa2b 12587db 2a5aa2b 60a396e 2a5aa2b 60a396e 2a5aa2b 12587db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
import numpy as np
import pytubefix as pt
import os, time, librosa, torch
from pyannote.audio import Pipeline
from transformers import pipeline
import spaces
def second_to_timecode(x: float) -> str:
"""Float x second to HH:MM:SS.DDD format."""
hour, x = divmod(x, 3600)
minute, x = divmod(x, 60)
second, x = divmod(x, 1)
millisecond = int(x * 1000.)
return '%.2d:%.2d:%.2d,%.3d' % (hour, minute, second, millisecond)
def download_from_youtube(youtube_link: str) -> str:
yt = pt.YouTube(youtube_link)
available_streams = yt.streams.filter(only_audio=True)
print('available streams:')
print(available_streams)
stream = available_streams.first()
# , audio_codec='wav'
stream.download(filename="audio.wav")
return "audio.wav"
MODEL_NAME = 'bayartsogt/whisper-large-v2-mn-13'
#MODEL_NAME = 'Dorjzodovsuren/whisper-large-v3-turbo-mn-2'
lang = 'mn'
chunk_length_s = 9
vad_activation_min_duration = 9 # sec
device = 0 if torch.cuda.is_available() else "cpu"
SAMPLE_RATE = 16_000
######## LOAD MODELS FROM HUB ########
dia_model = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=os.environ['TOKEN'])
vad_model = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token=os.environ['TOKEN'])
import torch
from transformers import pipeline
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
if MODEL_NAME == 'bayartsogt/whisper-large-v2-mn-13':
processor = AutoProcessor.from_pretrained(MODEL_NAME)
else:
processor = AutoProcessor.from_pretrained("openai/whisper-large-v3-turbo")
model = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_NAME)
asr_pipeline = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=chunk_length_s,
device_map="auto"
)
lang = 'mn'
asr_pipeline.model.config.forced_decoder_ids = asr_pipeline.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
print("----------> Loaded models <-----------")
gpu_timeout = int(os.getenv("GPU_TIMEOUT", 60))
@spaces.GPU(duration=gpu_timeout)
def generator(youtube_link, microphone, file_upload, num_speakers, max_duration, history):
if int(youtube_link != '') + int(microphone is not None) + int(file_upload is not None) != 1:
raise Exception(f"Only one of the source should be given youtube_link={youtube_link}, microphone={microphone}, file_upload={file_upload}")
history = history or ""
if microphone:
path = microphone
elif file_upload:
path = file_upload
elif youtube_link:
path = download_from_youtube(youtube_link)
waveform, sampling_rate = librosa.load(path, sr=SAMPLE_RATE, mono=True, duration=max_duration)
print(waveform.shape, sampling_rate)
waveform_tensor = torch.unsqueeze(torch.tensor(waveform), 0).to(device)
dia_result = dia_model({
"waveform": waveform_tensor,
"sample_rate": sampling_rate,
}, num_speakers=num_speakers)
counter = 1
for speech_turn, track, speaker in dia_result.itertracks(yield_label=True):
print(f"{speech_turn.start:4.1f} {speech_turn.end:4.1f} {speaker}")
_start = int(sampling_rate * speech_turn.start)
_end = int(sampling_rate * speech_turn.end)
data = waveform[_start: _end]
if speech_turn.end - speech_turn.start > vad_activation_min_duration:
print(f'audio duration {speech_turn.end - speech_turn.start} sec ----> activating VAD')
vad_output = vad_model({
'waveform': waveform_tensor[:, _start:_end],
'sample_rate': sampling_rate})
for vad_turn in vad_output.get_timeline().support():
vad_start = _start + int(sampling_rate * vad_turn.start)
vad_end = _start + int(sampling_rate * vad_turn.end)
prediction = asr_pipeline(waveform[vad_start: vad_end])['text']
history += f"{counter}\n" + \
f"{second_to_timecode(speech_turn.start + vad_turn.start)} --> {second_to_timecode(speech_turn.start + vad_turn.end)}\n" + \
f"{prediction}\n\n"
# f">> {speaker}: {prediction}\n\n"
yield history, history, None
counter += 1
else:
prediction = asr_pipeline(data)['text']
history += f"{counter}\n" + \
f"{second_to_timecode(speech_turn.start)} --> {second_to_timecode(speech_turn.end)}\n" + \
f"{prediction}\n\n"
# f">> {speaker}: {prediction}\n\n"
counter += 1
yield history, history, None
# https://support.google.com/youtube/answer/2734698?hl=en#zippy=%2Cbasic-file-formats%2Csubrip-srt-example%2Csubviewer-sbv-example
file_name = 'transcript.srt'
with open(file_name, 'w') as fp:
fp.write(history)
yield history, history, file_name
demo = gr.Interface(
generator,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.Audio(type="filepath"),
gr.Audio(type="filepath"),
gr.Number(value=1, label="Number of Speakers"),
gr.Number(value=120, label="Maximum Duration (Seconds)"),
'state',
],
outputs=['text', 'state', 'file'],
theme="huggingface",
title="Transcribe Mongolian Whisper π²π³",
description=(
"Transcribe Youtube Video / Microphone / Uploaded File in Mongolian Whisper Model." + \
" | You can upload SubRip file (`.srt`) [to your youtube video](https://support.google.com/youtube/answer/2734698?hl=en#zippy=%2Cbasic-file-formats)." + \
" | Please REFRESH π the page after you transcribed!" + \
" | π¦ [@_tsogoo_](https://twitter.com/_tsogoo_)" + \
" | π€ [@bayartsogt](https://huggingface.co/bayartsogt)" + \
""
),
allow_flagging="never",
)
# define queue - required for generators
demo.queue()
demo.launch(debug=True) |