import gradio as gr import requests, json public_ip = '71.202.66.108' model = 'llama3.1:latest' # You can replace the model name if needed context = [] ollama_serve = f"http://{public_ip}:11434/api/generate" # Call Ollama API def generate(prompt, context, top_k, top_p, temp): r = requests.post(ollama_serve, json={ 'model': model, 'prompt': prompt, 'context': context, 'options': { 'top_k': top_k, 'temperature': top_p, 'top_p': temp } }, stream=True) r.raise_for_status() response = "" for line in r.iter_lines(): body = json.loads(line) response_part = body.get('response', '') if 'error' in body: yield f"Error: {body['error']}" return # Append token to the growing response and yield the entire response so far if response_part: response += response_part yield response # Yield the growing response incrementally if body.get('done', False): context = body.get('context', []) return # End the generator once done def chat(input, chat_history, top_k, top_p, temp): chat_history = chat_history or [] global context # Initialize the user input as part of the chat history chat_history.append((input, "")) # Add user input first response = "" # Initialize empty response # Stream each part of the response as it's received response_stream = generate(input, context, top_k, top_p, temp) for response_part in response_stream: response = response_part # Keep updating with the new part of the response # Update the latest assistant response (the second part of the tuple) chat_history[-1] = (input, response) yield chat_history, chat_history # Yield the updated chat history ######################### Gradio Code ########################## # background-image: url('https://cdn.shoplightspeed.com/shops/631940/files/45845092/800x800x3/apple-apple-macpro-trashcan-12-core-27ghz-64gb-1tb.jpg'); block = gr.Blocks(css=""" .chatbox { background-image: url('https://cdn.shoplightspeed.com/shops/631940/files/45845092/800x800x3/apple-apple-macpro-trashcan-12-core-27ghz-64gb-1tb.jpg'); background-size: contain; /* Ensure the image fits the height */ background-repeat: no-repeat; background-position: center; height: 100%; /* Make the chatbox fill the available height */ } """) with block: gr.Markdown("""

Trashcan AI

""") gr.Markdown("""

LLama3.1 hosted on a 2013 "Trashcan" Mac Pro with ollama

""") # Add a custom class 'chatbox' to apply the background image chatbot = gr.Chatbot(elem_classes="chatbox") message = gr.Textbox(placeholder="Type here") state = gr.State() with gr.Row(): top_k = gr.Slider(0.0, 100.0, label="top_k", value=40, info="Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)") top_p = gr.Slider(0.0, 1.0, label="top_p", value=0.9, info="Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)") temp = gr.Slider(0.0, 2.0, label="temperature", value=0.8, info="The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8)") submit = gr.Button("SEND") # Use .click() to trigger the response streaming submit.click(chat, inputs=[message, state, top_k, top_p, temp], outputs=[chatbot, state]) if __name__ == "__main__": block.launch()