Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
import torch | |
import spaces | |
# Load models for English and Arabic | |
def load_model(model_name): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map=device, | |
torch_dtype="auto", | |
trust_remote_code=True, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
generator = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=False, | |
max_new_tokens=500, | |
do_sample=True # Changed to enable sampling for more creative outputs | |
) | |
return generator | |
def generate_text(prompt, model_name): | |
generator = load_model(model_name) | |
messages = [{"role": "user", "content": prompt}] | |
output = generator(messages) | |
return output[0]["generated_text"] | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=generate_story, | |
inputs=[ | |
gr.Radio(choices=["microsoft/Phi-3-mini-4k-instruct", "ALLaM-AI/ALLaM-7B-Instruct-preview"], label="Select Language"), | |
gr.Textbox(lines=2, placeholder="Enter your story prompt here...") | |
], | |
outputs=gr.Textbox(label="Generated Story"), | |
title="Kids Storyteller", | |
description="Choose a language and enter a prompt to generate a fun story for kids!", | |
examples=[ | |
["microsoft/Phi-3-mini-4k-instruct", "Once upon a time in a magical forest..."], | |
["ALLaM-AI/ALLaM-7B-Instruct-preview", "في قديم الزمان في غابة سحرية..."] | |
] | |
) | |
demo.launch() | |