Spaces:
Paused
Paused
from fastapi import FastAPI, Request | |
from fastapi.responses import StreamingResponse | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import torch.nn.functional as F | |
app = FastAPI() | |
# Load the model and tokenizer | |
model_name = "EleutherAI/gpt-neo-1.3B" # Replace with your desired model | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
async def predict(request: Request): | |
data = await request.json() | |
prompt = data.get("prompt", "") | |
if not prompt: | |
return {"error": "Prompt is required"} | |
# Tokenize the input | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
input_ids = inputs.input_ids | |
attention_mask = inputs.attention_mask | |
def token_generator(): | |
temperature = 0.7 | |
top_p = 0.9 | |
for _ in range(100): # Limit to 100 tokens | |
with torch.no_grad(): # Disable gradient computation for inference | |
outputs = model(input_ids=input_ids, attention_mask=attention_mask) | |
next_token_logits = outputs.logits[:, -1, :] | |
# Apply temperature and softmax | |
next_token_logits = next_token_logits / temperature | |
next_token_probs = F.softmax(next_token_logits, dim=-1) | |
# Apply nucleus sampling (top-p) | |
sorted_probs, sorted_indices = torch.sort(next_token_probs, descending=True) | |
cumulative_probs = torch.cumsum(sorted_probs, dim=-1) | |
sorted_probs = sorted_probs[cumulative_probs <= top_p] | |
sorted_indices = sorted_indices[:len(sorted_probs)] | |
# Sample next token | |
if len(sorted_probs) > 0: | |
next_token_id = sorted_indices[torch.multinomial(sorted_probs, 1)] | |
else: | |
next_token_id = torch.argmax(next_token_probs) | |
# Append the new token to the input sequence | |
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1)], dim=-1) | |
# Decode and yield the token | |
token = tokenizer.decode(next_token_id.squeeze(), skip_special_tokens=True) | |
yield token + " " | |
# Stop if the end-of-sequence token is generated | |
if next_token_id.squeeze().item() == tokenizer.eos_token_id: | |
break | |
return StreamingResponse(token_generator(), media_type="text/plain") | |