import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Sidebar for user input st.sidebar.header("Model Configuration") model_name = st.sidebar.text_input("Enter model name", "huggingface/transformers") # Load model and tokenizer on demand @st.cache_resource def load_model(model_name): try: # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) return tokenizer, model except Exception as e: st.error(f"Error loading model: {e}") return None, None # Load the model and tokenizer tokenizer, model = load_model(model_name) # Input text box in the main panel st.title("Text Classification with Hugging Face Models") user_input = st.text_area("Enter text for classification:") # Make prediction if user input is provided if user_input and model and tokenizer: inputs = tokenizer(user_input, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # Display results (e.g., classification logits) logits = outputs.logits predicted_class = torch.argmax(logits, dim=-1).item() st.write(f"Predicted Class: {predicted_class}") st.write(f"Logits: {logits}") else: st.info("Please enter some text to classify.")