Spaces:
Sleeping
Sleeping
Update utilities_with_panel.py
Browse files- utilities_with_panel.py +1025 -1025
utilities_with_panel.py
CHANGED
@@ -1,1025 +1,1025 @@
|
|
1 |
-
from numerize.numerize import numerize
|
2 |
-
import streamlit as st
|
3 |
-
import pandas as pd
|
4 |
-
import json
|
5 |
-
from classes import Channel, Scenario
|
6 |
-
import numpy as np
|
7 |
-
from plotly.subplots import make_subplots
|
8 |
-
import plotly.graph_objects as go
|
9 |
-
from classes import class_to_dict
|
10 |
-
from collections import OrderedDict
|
11 |
-
import io
|
12 |
-
import plotly
|
13 |
-
from pathlib import Path
|
14 |
-
import pickle
|
15 |
-
import streamlit_authenticator as stauth
|
16 |
-
import yaml
|
17 |
-
from yaml import SafeLoader
|
18 |
-
from streamlit.components.v1 import html
|
19 |
-
import smtplib
|
20 |
-
from scipy.optimize import curve_fit
|
21 |
-
from sklearn.metrics import r2_score
|
22 |
-
from classes import class_from_dict
|
23 |
-
import os
|
24 |
-
import base64
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
color_palette = ['#001f78', '#00b5db', '#f03d14', '#fa6e0a', '#ffbf45']
|
30 |
-
|
31 |
-
|
32 |
-
CURRENCY_INDICATOR = '$'
|
33 |
-
|
34 |
-
def load_authenticator():
|
35 |
-
with open('config.yaml') as file:
|
36 |
-
config = yaml.load(file, Loader=SafeLoader)
|
37 |
-
st.session_state['config'] = config
|
38 |
-
authenticator = stauth.Authenticate(
|
39 |
-
config['credentials'],
|
40 |
-
config['cookie']['name'],
|
41 |
-
config['cookie']['key'],
|
42 |
-
config['cookie']['expiry_days'],
|
43 |
-
config['preauthorized']
|
44 |
-
)
|
45 |
-
st.session_state['authenticator'] = authenticator
|
46 |
-
return authenticator
|
47 |
-
|
48 |
-
def nav_page(page_name, timeout_secs=3):
|
49 |
-
nav_script = """
|
50 |
-
<script type="text/javascript">
|
51 |
-
function attempt_nav_page(page_name, start_time, timeout_secs) {
|
52 |
-
var links = window.parent.document.getElementsByTagName("a");
|
53 |
-
for (var i = 0; i < links.length; i++) {
|
54 |
-
if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) {
|
55 |
-
links[i].click();
|
56 |
-
return;
|
57 |
-
}
|
58 |
-
}
|
59 |
-
var elasped = new Date() - start_time;
|
60 |
-
if (elasped < timeout_secs * 1000) {
|
61 |
-
setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs);
|
62 |
-
} else {
|
63 |
-
alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s).");
|
64 |
-
}
|
65 |
-
}
|
66 |
-
window.addEventListener("load", function() {
|
67 |
-
attempt_nav_page("%s", new Date(), %d);
|
68 |
-
});
|
69 |
-
</script>
|
70 |
-
""" % (page_name, timeout_secs)
|
71 |
-
html(nav_script)
|
72 |
-
|
73 |
-
|
74 |
-
# def load_local_css(file_name):
|
75 |
-
# with open(file_name) as f:
|
76 |
-
# st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
77 |
-
|
78 |
-
|
79 |
-
# def set_header():
|
80 |
-
# return st.markdown(f"""<div class='main-header'>
|
81 |
-
# <h1>MMM LiME</h1>
|
82 |
-
# <img src="https://assets-global.website-files.com/64c8fffb0e95cbc525815b79/64df84637f83a891c1473c51_Vector%20(Stroke).svg ">
|
83 |
-
# </div>""", unsafe_allow_html=True)
|
84 |
-
|
85 |
-
path = os.path.dirname(__file__)
|
86 |
-
|
87 |
-
file_ = open(f"{path}/mastercard_logo.png", "rb")
|
88 |
-
|
89 |
-
contents = file_.read()
|
90 |
-
|
91 |
-
data_url = base64.b64encode(contents).decode("utf-8")
|
92 |
-
|
93 |
-
file_.close()
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
DATA_PATH = './data'
|
98 |
-
|
99 |
-
IMAGES_PATH = './data/images_224_224'
|
100 |
-
|
101 |
-
# New - Sprint 2
|
102 |
-
if 'bin_dict' not in st.session_state:
|
103 |
-
|
104 |
-
with open("data_import.pkl", "rb") as f:
|
105 |
-
data = pickle.load(f)
|
106 |
-
|
107 |
-
st.session_state['bin_dict'] = data["bin_dict"]
|
108 |
-
|
109 |
-
# panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
|
110 |
-
|
111 |
-
panel_col="Panel"
|
112 |
-
|
113 |
-
is_panel = True if len(panel_col)>0 else False
|
114 |
-
|
115 |
-
date_col='Date'
|
116 |
-
#is_panel = False # flag if set to true - do panel level response curves
|
117 |
-
|
118 |
-
def load_local_css(file_name):
|
119 |
-
|
120 |
-
with open(file_name) as f:
|
121 |
-
|
122 |
-
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
# def set_header():
|
129 |
-
|
130 |
-
# return st.markdown(f"""<div class='main-header'>
|
131 |
-
|
132 |
-
# <h1>H & M Recommendations</h1>
|
133 |
-
|
134 |
-
# <img src="data:image;base64,{data_url}", alt="Logo">
|
135 |
-
|
136 |
-
# </div>""", unsafe_allow_html=True)
|
137 |
-
path1 = os.path.dirname(__file__)
|
138 |
-
|
139 |
-
file_1 = open(f"{path}/ALDI_2017.png", "rb")
|
140 |
-
|
141 |
-
contents1 = file_1.read()
|
142 |
-
|
143 |
-
data_url1 = base64.b64encode(contents1).decode("utf-8")
|
144 |
-
|
145 |
-
file_1.close()
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
DATA_PATH1 = './data'
|
150 |
-
|
151 |
-
IMAGES_PATH1 = './data/images_224_224'
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
def set_header():
|
158 |
-
return st.markdown(f"""<div class='main-header'>
|
159 |
-
<!-- <h1></h1> -->
|
160 |
-
<div >
|
161 |
-
<img class='blend-logo' src="data:image;base64,{data_url1}", alt="Logo">
|
162 |
-
</div>""", unsafe_allow_html=True)
|
163 |
-
|
164 |
-
# def set_header():
|
165 |
-
# logo_path = "./path/to/your/local/LIME_logo.png" # Replace with the actual file path
|
166 |
-
# text = "LiME"
|
167 |
-
# return st.markdown(f"""<div class='main-header'>
|
168 |
-
# <img src="data:image/png;base64,{data_url}" alt="Logo" style="float: left; margin-right: 10px; width: 100px; height: auto;">
|
169 |
-
# <h1>{text}</h1>
|
170 |
-
# </div>""", unsafe_allow_html=True)
|
171 |
-
|
172 |
-
|
173 |
-
def s_curve(x,K,b,a,x0):
|
174 |
-
return K / (1 + b * np.exp(-a*(x-x0)))
|
175 |
-
|
176 |
-
|
177 |
-
def overview_test_data_prep_panel(X, df, spends_X, date_col, panel_col, target_col):
|
178 |
-
'''
|
179 |
-
function to create the data which is used in initialize data fn
|
180 |
-
X : X test with contributions
|
181 |
-
df : originally uploaded data (media data) which has raw vars
|
182 |
-
spends_X : spends of dates in X test
|
183 |
-
'''
|
184 |
-
|
185 |
-
# define channels
|
186 |
-
channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'],
|
187 |
-
|
188 |
-
'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions'], #, 'fb:_level_achieved_-_tier_1_clicks'],
|
189 |
-
|
190 |
-
'fb_level_achieved_tier_2': ['fb:_level_achieved_tier_2_impressions',
|
191 |
-
'fb_level_achieved_tier_2_clicks'],
|
192 |
-
|
193 |
-
'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'],
|
194 |
-
|
195 |
-
'ga_app': ['ga_app_impressions', 'ga_app_clicks'],
|
196 |
-
|
197 |
-
'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'],
|
198 |
-
|
199 |
-
'kwai': ['kwai_impressions', 'kwai_clicks'],
|
200 |
-
|
201 |
-
'programmatic': ['programmatic_impressions', 'programmatic_clicks'],
|
202 |
-
|
203 |
-
# 'affiliates':['affiliates_clicks'],
|
204 |
-
#
|
205 |
-
# "indicacao":['indicacao_clicks'],
|
206 |
-
#
|
207 |
-
# "infleux":['infleux_clicks'],
|
208 |
-
#
|
209 |
-
# "influencer":['influencer_clicks']
|
210 |
-
}
|
211 |
-
|
212 |
-
channel_list = list(channels.keys())
|
213 |
-
|
214 |
-
# map transformed variable to raw variable name & channel name
|
215 |
-
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
|
216 |
-
variables = {}
|
217 |
-
channel_and_variables = {}
|
218 |
-
new_variables = {}
|
219 |
-
new_channels_and_variables = {}
|
220 |
-
|
221 |
-
for transformed_var in [col for col in
|
222 |
-
X.drop(columns=[date_col, panel_col, target_col, 'pred', 'panel_effect']).columns if
|
223 |
-
"_contr" not in col]:
|
224 |
-
if len([col for col in df.columns if col in transformed_var]) == 1:
|
225 |
-
raw_var = [col for col in df.columns if col in transformed_var][0]
|
226 |
-
variables[transformed_var] = raw_var
|
227 |
-
channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][
|
228 |
-
0]
|
229 |
-
else:
|
230 |
-
new_variables[transformed_var] = transformed_var
|
231 |
-
new_channels_and_variables[transformed_var] = 'base'
|
232 |
-
|
233 |
-
# Raw DF
|
234 |
-
raw_X = pd.merge(X[[date_col, panel_col]], df[[date_col, panel_col] + list(variables.values())], how='left',
|
235 |
-
on=[date_col, panel_col])
|
236 |
-
assert len(raw_X) == len(X)
|
237 |
-
|
238 |
-
raw_X_cols = []
|
239 |
-
for i in raw_X.columns:
|
240 |
-
if i in channel_and_variables.keys():
|
241 |
-
raw_X_cols.append(channel_and_variables[i])
|
242 |
-
else:
|
243 |
-
raw_X_cols.append(i)
|
244 |
-
raw_X.columns = raw_X_cols
|
245 |
-
|
246 |
-
# Contribution DF
|
247 |
-
contr_X = X[[date_col, panel_col, 'panel_effect'] + [col for col in X.columns if
|
248 |
-
"_contr" in col and "sum_" not in col]].copy()
|
249 |
-
new_variables = [col for col in contr_X.columns if
|
250 |
-
"_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()]
|
251 |
-
if len(new_variables) > 0:
|
252 |
-
contr_X['const'] = contr_X[['panel_effect'] + new_variables].sum(axis=1)
|
253 |
-
contr_X.drop(columns=['panel_effect'], inplace=True)
|
254 |
-
contr_X.drop(columns=new_variables, inplace=True)
|
255 |
-
else:
|
256 |
-
contr_X.rename(columns={'panel_effect': 'const'}, inplace=True)
|
257 |
-
|
258 |
-
new_contr_X_cols = []
|
259 |
-
for col in contr_X.columns:
|
260 |
-
col_clean = col.replace("_contr", "")
|
261 |
-
new_contr_X_cols.append(col_clean)
|
262 |
-
contr_X.columns = new_contr_X_cols
|
263 |
-
|
264 |
-
contr_X_cols = []
|
265 |
-
for i in contr_X.columns:
|
266 |
-
if i in variables.keys():
|
267 |
-
contr_X_cols.append(channel_and_variables[variables[i]])
|
268 |
-
else:
|
269 |
-
contr_X_cols.append(i)
|
270 |
-
contr_X.columns = contr_X_cols
|
271 |
-
|
272 |
-
# Spends DF
|
273 |
-
spends_X.columns = [col.replace("_cost", "") for col in spends_X.columns]
|
274 |
-
|
275 |
-
raw_X.rename(columns={"date": "Date"}, inplace=True)
|
276 |
-
contr_X.rename(columns={"date": "Date"}, inplace=True)
|
277 |
-
spends_X.rename(columns={'date': 'Week'}, inplace=True)
|
278 |
-
|
279 |
-
# Create excel
|
280 |
-
file_name = "data_test_overview_panel_#" + target_col + ".xlsx"
|
281 |
-
with pd.ExcelWriter(file_name) as writer:
|
282 |
-
raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False)
|
283 |
-
contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False)
|
284 |
-
spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False)
|
285 |
-
|
286 |
-
|
287 |
-
def overview_test_data_prep_nonpanel(X, df, spends_X, date_col, target_col):
|
288 |
-
'''
|
289 |
-
function to create the data which is used in initialize data fn
|
290 |
-
X : X test with contributions
|
291 |
-
df : originally uploaded data (media data) which has raw vars
|
292 |
-
spends_X : spends of dates in X test
|
293 |
-
'''
|
294 |
-
# define channels
|
295 |
-
channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'],
|
296 |
-
|
297 |
-
'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions', 'fb_level_achieved_tier_1_clicks'],
|
298 |
-
|
299 |
-
'fb_level_achieved_tier_2': ['fb_level_achieved_tier_2_impressions',
|
300 |
-
'fb_level_achieved_tier_2_clicks'],
|
301 |
-
|
302 |
-
'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'],
|
303 |
-
|
304 |
-
'ga_app_will_and_cid_pequena_baixo_risco': ['ga_app_will_and_cid_pequena_baixo_risco_impressions', 'ga_app_will_and_cid_pequena_baixo_risco_clicks'],
|
305 |
-
|
306 |
-
'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'],
|
307 |
-
|
308 |
-
'kwai': ['kwai_impressions', 'kwai_clicks'],
|
309 |
-
|
310 |
-
'programmatic': ['programmatic_impressions', 'programmatic_clicks'],
|
311 |
-
|
312 |
-
'affiliates':['affiliates_clicks', 'affiliates_impressions'],
|
313 |
-
|
314 |
-
"indicacao":['indicacao_clicks', 'indicacao_impressions'],
|
315 |
-
|
316 |
-
"infleux":['infleux_clicks', 'infleux_impressions'],
|
317 |
-
|
318 |
-
"influencer":['influencer_clicks', 'influencer_impressions']
|
319 |
-
}
|
320 |
-
|
321 |
-
channel_list = list(channels.keys())
|
322 |
-
|
323 |
-
# map transformed variable to raw variable name & channel name
|
324 |
-
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
|
325 |
-
variables = {}
|
326 |
-
channel_and_variables = {}
|
327 |
-
new_variables = {}
|
328 |
-
new_channels_and_variables = {}
|
329 |
-
|
330 |
-
cols_to_del = list(set([date_col, target_col, 'pred']).intersection((set(X.columns))))
|
331 |
-
for transformed_var in [col for col in
|
332 |
-
X.drop(columns=cols_to_del).columns if
|
333 |
-
"_contr" not in col]: # also has 'const'
|
334 |
-
if len([col for col in df.columns if col in transformed_var]) == 1: # col is raw var
|
335 |
-
raw_var = [col for col in df.columns if col in transformed_var][0]
|
336 |
-
variables[transformed_var] = raw_var
|
337 |
-
channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][0]
|
338 |
-
else: # when no corresponding raw var then base
|
339 |
-
new_variables[transformed_var] = transformed_var
|
340 |
-
new_channels_and_variables[transformed_var] = 'base'
|
341 |
-
|
342 |
-
# Raw DF
|
343 |
-
raw_X = pd.merge(X[[date_col]], df[[date_col] + list(variables.values())], how='left',
|
344 |
-
on=[date_col])
|
345 |
-
assert len(raw_X) == len(X)
|
346 |
-
|
347 |
-
raw_X_cols = []
|
348 |
-
for i in raw_X.columns:
|
349 |
-
if i in channel_and_variables.keys():
|
350 |
-
raw_X_cols.append(channel_and_variables[i])
|
351 |
-
else:
|
352 |
-
raw_X_cols.append(i)
|
353 |
-
raw_X.columns = raw_X_cols
|
354 |
-
|
355 |
-
# Contribution DF
|
356 |
-
contr_X = X[[date_col] + [col for col in X.columns if "_contr" in col and "sum_" not in col]].copy()
|
357 |
-
# st.write(contr_X.columns)
|
358 |
-
new_variables = [col for col in contr_X.columns if
|
359 |
-
"_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()]
|
360 |
-
if len(new_variables) > 0: # if new vars are available, their contributions should be added to base (called const)
|
361 |
-
contr_X['const_contr'] = contr_X[['const_contr'] + new_variables].sum(axis=1)
|
362 |
-
contr_X.drop(columns=new_variables, inplace=True)
|
363 |
-
|
364 |
-
|
365 |
-
new_contr_X_cols = []
|
366 |
-
for col in contr_X.columns:
|
367 |
-
col_clean = col.replace("_contr", "")
|
368 |
-
new_contr_X_cols.append(col_clean)
|
369 |
-
contr_X.columns = new_contr_X_cols
|
370 |
-
|
371 |
-
contr_X_cols = []
|
372 |
-
for i in contr_X.columns:
|
373 |
-
if i in variables.keys():
|
374 |
-
contr_X_cols.append(channel_and_variables[variables[i]])
|
375 |
-
else:
|
376 |
-
contr_X_cols.append(i)
|
377 |
-
contr_X.columns = contr_X_cols
|
378 |
-
|
379 |
-
# Spends DF
|
380 |
-
spends_X.columns = [col.replace("_cost", "").replace("_spends", '').replace("_spend", "") for col in spends_X.columns]
|
381 |
-
|
382 |
-
raw_X.rename(columns={"date": "Date"}, inplace=True)
|
383 |
-
contr_X.rename(columns={"date": "Date"}, inplace=True)
|
384 |
-
spends_X.rename(columns={'date': 'Week'}, inplace=True)
|
385 |
-
|
386 |
-
# Create excel
|
387 |
-
file_name = "data_test_overview_panel_#" + target_col + ".xlsx"
|
388 |
-
with pd.ExcelWriter(file_name) as writer:
|
389 |
-
raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False)
|
390 |
-
contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False)
|
391 |
-
spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False)
|
392 |
-
|
393 |
-
|
394 |
-
def initialize_data(target_col,selected_markets):
|
395 |
-
# uopx_conv_rates = {'streaming_impressions' : 0.007,'digital_impressions' : 0.007,'search_clicks' : 0.00719,'tv_impressions' : 0.000173,
|
396 |
-
# "digital_clicks":0.005,"streaming_clicks":0.004,'streaming_spends':1,"tv_spends":1,"search_spends":1,
|
397 |
-
# "digital_spends":1}
|
398 |
-
#print('State initialized')
|
399 |
-
# excel = pd.read_excel("data_test_overview_panel.xlsx",sheet_name=None)
|
400 |
-
#excel = pd.read_excel(
|
401 |
-
|
402 |
-
excel = pd.read_excel(
|
403 |
-
|
404 |
-
raw_df = excel['RAW DATA MMM']
|
405 |
-
|
406 |
-
spend_df = excel['SPEND INPUT']
|
407 |
-
contri_df = excel['CONTRIBUTION MMM']
|
408 |
-
|
409 |
-
#st.write(raw_df)
|
410 |
-
if selected_markets!= "Total Market":
|
411 |
-
|
412 |
-
raw_df=raw_df[raw_df['Panel']==selected_markets]
|
413 |
-
spend_df=spend_df[spend_df['Panel']==selected_markets]
|
414 |
-
contri_df=contri_df[contri_df['Panel']==selected_markets]
|
415 |
-
|
416 |
-
else:
|
417 |
-
raw_df=raw_df.groupby('Date').sum().reset_index()
|
418 |
-
spend_df=spend_df.groupby('Week').sum().reset_index()
|
419 |
-
contri_df=contri_df.groupby('Date').sum().reset_index()
|
420 |
-
#Revenue_df = excel['Revenue']
|
421 |
-
|
422 |
-
## remove sesonalities, indices etc ...
|
423 |
-
exclude_columns = ['Date', 'Week','Panel',date_col, panel_col,'Others'
|
424 |
-
]
|
425 |
-
|
426 |
-
# Aggregate all 3 dfs to date level (from date-panel level)
|
427 |
-
raw_df[date_col]=pd.to_datetime(raw_df[date_col])
|
428 |
-
raw_df_aggregations = {c:'sum' for c in raw_df.columns if c not in exclude_columns}
|
429 |
-
raw_df = raw_df.groupby(date_col).agg(raw_df_aggregations).reset_index()
|
430 |
-
|
431 |
-
contri_df[date_col]=pd.to_datetime(contri_df[date_col])
|
432 |
-
contri_df_aggregations = {c:'sum' for c in contri_df.columns if c not in exclude_columns}
|
433 |
-
contri_df = contri_df.groupby(date_col).agg(contri_df_aggregations).reset_index()
|
434 |
-
|
435 |
-
input_df = raw_df.sort_values(by=[date_col])
|
436 |
-
|
437 |
-
output_df = contri_df.sort_values(by=[date_col])
|
438 |
-
|
439 |
-
spend_df['Week'] = pd.to_datetime(spend_df['Week'], format='%Y-%m-%d', errors='coerce')
|
440 |
-
spend_df_aggregations = {c: 'sum' for c in spend_df.columns if c not in exclude_columns}
|
441 |
-
spend_df = spend_df.groupby('Week').agg(spend_df_aggregations).reset_index()
|
442 |
-
# spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce')
|
443 |
-
# spend_df = spend_df.sort_values(by='Week')
|
444 |
-
|
445 |
-
|
446 |
-
channel_list = [col for col in input_df.columns if col not in exclude_columns]
|
447 |
-
|
448 |
-
response_curves = {}
|
449 |
-
mapes = {}
|
450 |
-
rmses = {}
|
451 |
-
upper_limits = {}
|
452 |
-
powers = {}
|
453 |
-
r2 = {}
|
454 |
-
conv_rates = {}
|
455 |
-
output_cols = []
|
456 |
-
channels = {}
|
457 |
-
sales = None
|
458 |
-
dates = input_df.Date.values
|
459 |
-
actual_output_dic = {}
|
460 |
-
actual_input_dic = {}
|
461 |
-
|
462 |
-
# ONLY FOR TESTING
|
463 |
-
# channel_list=['programmatic']
|
464 |
-
infeasible_channels = [c for c in contri_df.select_dtypes(include=['float', 'int']).columns if contri_df[c].sum()<=0]
|
465 |
-
# st.write(infeasible_channels)
|
466 |
-
channel_list=list(set(channel_list)-set(infeasible_channels))
|
467 |
-
|
468 |
-
|
469 |
-
for inp_col in channel_list:
|
470 |
-
#st.write(inp_col)
|
471 |
-
|
472 |
-
# # New - Sprint 2
|
473 |
-
# if is_panel:
|
474 |
-
# input_df1 = input_df.groupby([date_col]).agg({inp_col:'sum'}).reset_index() # aggregate spends on date
|
475 |
-
# spends = input_df1[inp_col].values
|
476 |
-
# else :
|
477 |
-
# spends = input_df[inp_col].values
|
478 |
-
spends = spend_df[inp_col].values
|
479 |
-
|
480 |
-
x = spends.copy()
|
481 |
-
# upper limit for penalty
|
482 |
-
upper_limits[inp_col] = 2*x.max()
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
# contribution
|
487 |
-
# New - Sprint 2
|
488 |
-
out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0]
|
489 |
-
if is_panel :
|
490 |
-
output_df1 = output_df.groupby([date_col]).agg({out_col:'sum'}).reset_index()
|
491 |
-
y = output_df1[out_col].values.copy()
|
492 |
-
else :
|
493 |
-
y = output_df[out_col].values.copy()
|
494 |
-
|
495 |
-
actual_output_dic[inp_col] = y.copy()
|
496 |
-
actual_input_dic[inp_col] = x.copy()
|
497 |
-
##output cols aggregation
|
498 |
-
output_cols.append(out_col)
|
499 |
-
|
500 |
-
## scale the input
|
501 |
-
power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)
|
502 |
-
if power >= 0 :
|
503 |
-
x = x / 10**power
|
504 |
-
|
505 |
-
|
506 |
-
x = x.astype('float64')
|
507 |
-
y = y.astype('float64')
|
508 |
-
#print('#printing yyyyyyyyy')
|
509 |
-
#print(inp_col)
|
510 |
-
#print(x.max())
|
511 |
-
#print(y.max())
|
512 |
-
# st.write(y.max(),x.max())
|
513 |
-
print(y.max(),x.max())
|
514 |
-
if y.max()<=0.01:
|
515 |
-
if x.max()<=0.01 :
|
516 |
-
st.write("here-here")
|
517 |
-
bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))
|
518 |
-
|
519 |
-
else :
|
520 |
-
st.write("here")
|
521 |
-
bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))
|
522 |
-
else :
|
523 |
-
bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max()))
|
524 |
-
#bounds = ((y.max(), 3*y.max()),(0,1000),(0,1),(0,x.max()))
|
525 |
-
params,_ = curve_fit(s_curve,x,y,p0=(2*y.max(),0.01,1e-5,x.max()),
|
526 |
-
bounds=bounds,
|
527 |
-
maxfev=int(1e5))
|
528 |
-
mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean()
|
529 |
-
rmse = np.sqrt(((y - s_curve(x,*params))**2).mean())
|
530 |
-
r2_ = r2_score(y, s_curve(x,*params))
|
531 |
-
|
532 |
-
response_curves[inp_col] = {'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]}
|
533 |
-
mapes[inp_col] = mape
|
534 |
-
rmses[inp_col] = rmse
|
535 |
-
r2[inp_col] = r2_
|
536 |
-
powers[inp_col] = power
|
537 |
-
|
538 |
-
|
539 |
-
## conversion rates
|
540 |
-
spend_col = [_col for _col in spend_df.columns if _col.startswith(inp_col.rsplit('_',1)[0])][0]
|
541 |
-
|
542 |
-
#print('#printing spendssss')
|
543 |
-
#print(spend_col)
|
544 |
-
conv = (spend_df.set_index('Week')[spend_col] / input_df.set_index('Date')[inp_col].clip(lower=1)).reset_index()
|
545 |
-
conv.rename(columns={'index':'Week'},inplace=True)
|
546 |
-
conv['year'] = conv.Week.dt.year
|
547 |
-
conv_rates[inp_col] = list(conv.drop('Week',axis=1).mean().to_dict().values())[0]
|
548 |
-
##print('Before',conv_rates[inp_col])
|
549 |
-
# conv_rates[inp_col] = uopx_conv_rates[inp_col]
|
550 |
-
##print('After',(conv_rates[inp_col]))
|
551 |
-
|
552 |
-
|
553 |
-
channel = Channel(name=inp_col,dates=dates,
|
554 |
-
spends=spends,
|
555 |
-
# conversion_rate = np.mean(list(conv_rates[inp_col].values())),
|
556 |
-
conversion_rate = conv_rates[inp_col],
|
557 |
-
response_curve_type='s-curve',
|
558 |
-
response_curve_params={'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]},
|
559 |
-
bounds=np.array([-10,10]))
|
560 |
-
channels[inp_col] = channel
|
561 |
-
if sales is None:
|
562 |
-
sales = channel.actual_sales
|
563 |
-
else:
|
564 |
-
sales += channel.actual_sales
|
565 |
-
# st.write(inp_col, channel.actual_sales)
|
566 |
-
# st.write(output_cols)
|
567 |
-
other_contributions = output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only = True).values
|
568 |
-
correction = output_df.drop(['Date'],axis=1).sum(axis=1).values - (sales + other_contributions)
|
569 |
-
|
570 |
-
scenario_test_df=pd.DataFrame(columns=['other_contributions','correction', 'sales'])
|
571 |
-
scenario_test_df['other_contributions']=other_contributions
|
572 |
-
scenario_test_df['correction']=correction
|
573 |
-
scenario_test_df['sales']=sales
|
574 |
-
scenario_test_df.to_csv("test/scenario_test_df.csv",index=False)
|
575 |
-
output_df.to_csv("test/output_df.csv",index=False)
|
576 |
-
|
577 |
-
scenario = Scenario(name='default', channels=channels, constant=other_contributions, correction = correction)
|
578 |
-
## setting session variables
|
579 |
-
st.session_state['initialized'] = True
|
580 |
-
st.session_state['actual_df'] = input_df
|
581 |
-
st.session_state['raw_df'] = raw_df
|
582 |
-
st.session_state['contri_df'] = output_df
|
583 |
-
default_scenario_dict = class_to_dict(scenario)
|
584 |
-
st.session_state['default_scenario_dict'] = default_scenario_dict
|
585 |
-
st.session_state['scenario'] = scenario
|
586 |
-
st.session_state['channels_list'] = channel_list
|
587 |
-
st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
|
588 |
-
st.session_state['rcs'] = response_curves
|
589 |
-
st.session_state['powers'] = powers
|
590 |
-
st.session_state['actual_contribution_df'] = pd.DataFrame(actual_output_dic)
|
591 |
-
st.session_state['actual_input_df'] = pd.DataFrame(actual_input_dic)
|
592 |
-
|
593 |
-
for channel in channels.values():
|
594 |
-
st.session_state[channel.name] = numerize(channel.actual_total_spends * channel.conversion_rate,1)
|
595 |
-
|
596 |
-
st.session_state['xlsx_buffer'] = io.BytesIO()
|
597 |
-
|
598 |
-
|
599 |
-
if Path('../saved_scenarios.pkl').exists():
|
600 |
-
with open('../saved_scenarios.pkl','rb') as f:
|
601 |
-
st.session_state['saved_scenarios'] = pickle.load(f)
|
602 |
-
else:
|
603 |
-
st.session_state['saved_scenarios'] = OrderedDict()
|
604 |
-
|
605 |
-
st.session_state['total_spends_change'] = 0
|
606 |
-
st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
|
607 |
-
st.session_state['disable_download_button'] = True
|
608 |
-
|
609 |
-
# def initialize_data():
|
610 |
-
# # fetch data from excel
|
611 |
-
# output = pd.read_excel('data.xlsx',sheet_name=None)
|
612 |
-
# raw_df = output['RAW DATA MMM']
|
613 |
-
# contribution_df = output['CONTRIBUTION MMM']
|
614 |
-
# Revenue_df = output['Revenue']
|
615 |
-
|
616 |
-
# ## channels to be shows
|
617 |
-
# channel_list = []
|
618 |
-
# for col in raw_df.columns:
|
619 |
-
# if 'click' in col.lower() or 'spend' in col.lower() or 'imp' in col.lower():
|
620 |
-
# ##print(col)
|
621 |
-
# channel_list.append(col)
|
622 |
-
# else:
|
623 |
-
# pass
|
624 |
-
|
625 |
-
# ## NOTE : Considered only Desktop spends for all calculations
|
626 |
-
# acutal_df = raw_df[raw_df.Region == 'Desktop'].copy()
|
627 |
-
# ## NOTE : Considered one year of data
|
628 |
-
# acutal_df = acutal_df[acutal_df.Date>'2020-12-31']
|
629 |
-
# actual_df = acutal_df.drop('Region',axis=1).sort_values(by='Date')[[*channel_list,'Date']]
|
630 |
-
|
631 |
-
# ##load response curves
|
632 |
-
# with open('./grammarly_response_curves.json','r') as f:
|
633 |
-
# response_curves = json.load(f)
|
634 |
-
|
635 |
-
# ## create channel dict for scenario creation
|
636 |
-
# dates = actual_df.Date.values
|
637 |
-
# channels = {}
|
638 |
-
# rcs = {}
|
639 |
-
# constant = 0.
|
640 |
-
# for i,info_dict in enumerate(response_curves):
|
641 |
-
# name = info_dict.get('name')
|
642 |
-
# response_curve_type = info_dict.get('response_curve')
|
643 |
-
# response_curve_params = info_dict.get('params')
|
644 |
-
# rcs[name] = response_curve_params
|
645 |
-
# if name != 'constant':
|
646 |
-
# spends = actual_df[name].values
|
647 |
-
# channel = Channel(name=name,dates=dates,
|
648 |
-
# spends=spends,
|
649 |
-
# response_curve_type=response_curve_type,
|
650 |
-
# response_curve_params=response_curve_params,
|
651 |
-
# bounds=np.array([-30,30]))
|
652 |
-
|
653 |
-
# channels[name] = channel
|
654 |
-
# else:
|
655 |
-
# constant = info_dict.get('value',0.) * len(dates)
|
656 |
-
|
657 |
-
# ## create scenario
|
658 |
-
# scenario = Scenario(name='default', channels=channels, constant=constant)
|
659 |
-
# default_scenario_dict = class_to_dict(scenario)
|
660 |
-
|
661 |
-
|
662 |
-
# ## setting session variables
|
663 |
-
# st.session_state['initialized'] = True
|
664 |
-
# st.session_state['actual_df'] = actual_df
|
665 |
-
# st.session_state['raw_df'] = raw_df
|
666 |
-
# st.session_state['default_scenario_dict'] = default_scenario_dict
|
667 |
-
# st.session_state['scenario'] = scenario
|
668 |
-
# st.session_state['channels_list'] = channel_list
|
669 |
-
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
|
670 |
-
# st.session_state['rcs'] = rcs
|
671 |
-
# for channel in channels.values():
|
672 |
-
# if channel.name not in st.session_state:
|
673 |
-
# st.session_state[channel.name] = float(channel.actual_total_spends)
|
674 |
-
|
675 |
-
# if 'xlsx_buffer' not in st.session_state:
|
676 |
-
# st.session_state['xlsx_buffer'] = io.BytesIO()
|
677 |
-
|
678 |
-
# ## for saving scenarios
|
679 |
-
# if 'saved_scenarios' not in st.session_state:
|
680 |
-
# if Path('../saved_scenarios.pkl').exists():
|
681 |
-
# with open('../saved_scenarios.pkl','rb') as f:
|
682 |
-
# st.session_state['saved_scenarios'] = pickle.load(f)
|
683 |
-
|
684 |
-
# else:
|
685 |
-
# st.session_state['saved_scenarios'] = OrderedDict()
|
686 |
-
|
687 |
-
# if 'total_spends_change' not in st.session_state:
|
688 |
-
# st.session_state['total_spends_change'] = 0
|
689 |
-
|
690 |
-
# if 'optimization_channels' not in st.session_state:
|
691 |
-
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
|
692 |
-
|
693 |
-
# if 'disable_download_button' not in st.session_state:
|
694 |
-
# st.session_state['disable_download_button'] = True
|
695 |
-
def create_channel_summary(scenario):
|
696 |
-
summary_columns = []
|
697 |
-
|
698 |
-
actual_spends_rows = []
|
699 |
-
|
700 |
-
actual_sales_rows = []
|
701 |
-
|
702 |
-
actual_roi_rows = []
|
703 |
-
|
704 |
-
for channel in scenario.channels.values():
|
705 |
-
|
706 |
-
name_mod = channel.name.replace('_', ' ')
|
707 |
-
|
708 |
-
if name_mod.lower().endswith(' imp'):
|
709 |
-
name_mod = name_mod.replace('Imp', ' Impressions')
|
710 |
-
|
711 |
-
print(name_mod, channel.actual_total_spends, channel.conversion_rate,
|
712 |
-
channel.actual_total_spends * channel.conversion_rate)
|
713 |
-
|
714 |
-
summary_columns.append(name_mod)
|
715 |
-
|
716 |
-
actual_spends_rows.append(format_numbers(float(channel.actual_total_spends * channel.conversion_rate)))
|
717 |
-
|
718 |
-
actual_sales_rows.append(format_numbers((float(channel.actual_total_sales))))
|
719 |
-
|
720 |
-
actual_roi_rows.append(decimal_formater(
|
721 |
-
format_numbers((channel.actual_total_sales) / (channel.actual_total_spends * channel.conversion_rate),
|
722 |
-
include_indicator=False, n_decimals=4), n_decimals=4))
|
723 |
-
|
724 |
-
actual_summary_df = pd.DataFrame([summary_columns, actual_spends_rows, actual_sales_rows, actual_roi_rows]).T
|
725 |
-
|
726 |
-
actual_summary_df.columns = ['Channel', 'Spends', 'Revenue', 'ROI']
|
727 |
-
|
728 |
-
actual_summary_df['Revenue'] = actual_summary_df['Revenue'].map(lambda x: str(x)[1:])
|
729 |
-
|
730 |
-
return actual_summary_df
|
731 |
-
|
732 |
-
|
733 |
-
# def create_channel_summary(scenario):
|
734 |
-
#
|
735 |
-
# # Provided data
|
736 |
-
# data = {
|
737 |
-
# 'Channel': ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer'],
|
738 |
-
# 'Spends': ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'],
|
739 |
-
# 'Revenue': ['558.0K', '3.5M', '5.2M', '3.1M', '3.1M', '2.1M', '20.8M', '1.6M', '728.4K', '22.9M', '4.8M']
|
740 |
-
# }
|
741 |
-
#
|
742 |
-
# # Create DataFrame
|
743 |
-
# df = pd.DataFrame(data)
|
744 |
-
#
|
745 |
-
# # Convert currency strings to numeric values
|
746 |
-
# df['Spends'] = df['Spends'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
|
747 |
-
# df['Revenue'] = df['Revenue'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
|
748 |
-
#
|
749 |
-
# # Calculate ROI
|
750 |
-
# df['ROI'] = ((df['Revenue'] - df['Spends']) / df['Spends'])
|
751 |
-
#
|
752 |
-
# # Format columns
|
753 |
-
# format_currency = lambda x: f"${x:,.1f}"
|
754 |
-
# format_roi = lambda x: f"{x:.1f}"
|
755 |
-
#
|
756 |
-
# df['Spends'] = ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K']
|
757 |
-
# df['Revenue'] = ['$ 536.3K', '$ 3.4M', '$ 5M', '$ 3M', '$ 3M', '$ 2M', '$ 20M', '$ 1.5M', '$ 7.1M', '$ 22M', '$ 4.6M']
|
758 |
-
# df['ROI'] = df['ROI'].apply(format_roi)
|
759 |
-
#
|
760 |
-
# return df
|
761 |
-
|
762 |
-
|
763 |
-
#@st.cache_data()
|
764 |
-
def create_contribution_pie(scenario):
|
765 |
-
#c1f7dc
|
766 |
-
|
767 |
-
light_blue = 'rgba(0, 31, 120, 0.7)'
|
768 |
-
light_orange = 'rgba(0, 181, 219, 0.7)'
|
769 |
-
light_green = 'rgba(240, 61, 20, 0.7)'
|
770 |
-
light_red = 'rgba(250, 110, 10, 0.7)'
|
771 |
-
light_purple = 'rgba(255, 191, 69, 0.7)'
|
772 |
-
|
773 |
-
colors_map = {col:color for col,color in zip(st.session_state['channels_list'],plotly.colors.n_colors(plotly.colors.hex_to_rgb('#BE6468'), plotly.colors.hex_to_rgb('#E7B8B7'),23))}
|
774 |
-
total_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Media Spends','Revenue Contribution'],specs=[[{"type": "pie"}, {"type": "pie"}]])
|
775 |
-
total_contribution_fig.add_trace(
|
776 |
-
go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
|
777 |
-
values= [round(scenario.channels[channel_name].actual_total_spends * scenario.channels[channel_name].conversion_rate,1) for channel_name in st.session_state['channels_list']] + [0],
|
778 |
-
marker_colors=[light_blue, light_orange, light_green, light_red, light_purple],
|
779 |
-
hole=0.3),
|
780 |
-
row=1, col=1)
|
781 |
-
|
782 |
-
total_contribution_fig.add_trace(
|
783 |
-
go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
|
784 |
-
values= [scenario.channels[channel_name].actual_total_sales for channel_name in st.session_state['channels_list']] + [scenario.correction.sum() + scenario.constant.sum()],
|
785 |
-
hole=0.3),
|
786 |
-
row=1, col=2)
|
787 |
-
|
788 |
-
total_contribution_fig.update_traces(textposition='inside',texttemplate='%{percent:.1%}')
|
789 |
-
total_contribution_fig.update_layout(uniformtext_minsize=12,title='', uniformtext_mode='hide')
|
790 |
-
return total_contribution_fig
|
791 |
-
|
792 |
-
#@st.cache_data()
|
793 |
-
|
794 |
-
# def create_contribuion_stacked_plot(scenario):
|
795 |
-
# weekly_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "bar"}, {"type": "bar"}]])
|
796 |
-
# raw_df = st.session_state['raw_df']
|
797 |
-
# df = raw_df.sort_values(by='Date')
|
798 |
-
# x = df.Date
|
799 |
-
# weekly_spends_data = []
|
800 |
-
# weekly_sales_data = []
|
801 |
-
# for channel_name in st.session_state['channels_list']:
|
802 |
-
# weekly_spends_data.append((go.Bar(x=x,
|
803 |
-
# y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
|
804 |
-
# name=channel_name_formating(channel_name),
|
805 |
-
# hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
|
806 |
-
# legendgroup=channel_name)))
|
807 |
-
# weekly_sales_data.append((go.Bar(x=x,
|
808 |
-
# y=scenario.channels[channel_name].actual_sales,
|
809 |
-
# name=channel_name_formating(channel_name),
|
810 |
-
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
|
811 |
-
# legendgroup=channel_name, showlegend=False)))
|
812 |
-
# for _d in weekly_spends_data:
|
813 |
-
# weekly_contribution_fig.add_trace(_d, row=1, col=1)
|
814 |
-
# for _d in weekly_sales_data:
|
815 |
-
# weekly_contribution_fig.add_trace(_d, row=1, col=2)
|
816 |
-
# weekly_contribution_fig.add_trace(go.Bar(x=x,
|
817 |
-
# y=scenario.constant + scenario.correction,
|
818 |
-
# name='Non Media',
|
819 |
-
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), row=1, col=2)
|
820 |
-
# weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribuion by week', xaxis_title='Date')
|
821 |
-
# weekly_contribution_fig.update_xaxes(showgrid=False)
|
822 |
-
# weekly_contribution_fig.update_yaxes(showgrid=False)
|
823 |
-
# return weekly_contribution_fig
|
824 |
-
|
825 |
-
# @st.cache_data(allow_output_mutation=True)
|
826 |
-
# def create_channel_spends_sales_plot(channel):
|
827 |
-
# if channel is not None:
|
828 |
-
# x = channel.dates
|
829 |
-
# _spends = channel.actual_spends * channel.conversion_rate
|
830 |
-
# _sales = channel.actual_sales
|
831 |
-
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
|
832 |
-
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
|
833 |
-
# channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#005b96'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
|
834 |
-
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
|
835 |
-
# channel_sales_spends_fig.update_xaxes(showgrid=False)
|
836 |
-
# channel_sales_spends_fig.update_yaxes(showgrid=False)
|
837 |
-
# else:
|
838 |
-
# raw_df = st.session_state['raw_df']
|
839 |
-
# df = raw_df.sort_values(by='Date')
|
840 |
-
# x = df.Date
|
841 |
-
# scenario = class_from_dict(st.session_state['default_scenario_dict'])
|
842 |
-
# _sales = scenario.constant + scenario.correction
|
843 |
-
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
|
844 |
-
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
|
845 |
-
# # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#15C39A'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
|
846 |
-
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
|
847 |
-
# channel_sales_spends_fig.update_xaxes(showgrid=False)
|
848 |
-
# channel_sales_spends_fig.update_yaxes(showgrid=False)
|
849 |
-
# return channel_sales_spends_fig
|
850 |
-
|
851 |
-
|
852 |
-
# Define a shared color palette
|
853 |
-
|
854 |
-
|
855 |
-
# def create_contribution_pie():
|
856 |
-
# color_palette = ['#F3F3F0', '#5E7D7E', '#2FA1FF', '#00EDED', '#00EAE4', '#304550', '#EDEBEB', '#7FBEFD', '#003059', '#A2F3F3', '#E1D6E2', '#B6B6B6']
|
857 |
-
# total_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "pie"}, {"type": "pie"}]])
|
858 |
-
#
|
859 |
-
# channels_list = ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer', 'Non Media']
|
860 |
-
#
|
861 |
-
# # Assign colors from the limited palette to channels
|
862 |
-
# colors_map = {col: color_palette[i % len(color_palette)] for i, col in enumerate(channels_list)}
|
863 |
-
# colors_map['Non Media'] = color_palette[5] # Assign fixed green color for 'Non Media'
|
864 |
-
#
|
865 |
-
# # Hardcoded values for Spends and Revenue
|
866 |
-
# spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0]
|
867 |
-
# revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16]
|
868 |
-
#
|
869 |
-
# # Add trace for Spends pie chart
|
870 |
-
# total_contribution_fig.add_trace(
|
871 |
-
# go.Pie(
|
872 |
-
# labels=[channel_name for channel_name in channels_list],
|
873 |
-
# values=spends_values,
|
874 |
-
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
|
875 |
-
# hole=0.3
|
876 |
-
# ),
|
877 |
-
# row=1, col=1
|
878 |
-
# )
|
879 |
-
#
|
880 |
-
# # Add trace for Revenue pie chart
|
881 |
-
# total_contribution_fig.add_trace(
|
882 |
-
# go.Pie(
|
883 |
-
# labels=[channel_name for channel_name in channels_list],
|
884 |
-
# values=revenue_values,
|
885 |
-
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
|
886 |
-
# hole=0.3
|
887 |
-
# ),
|
888 |
-
# row=1, col=2
|
889 |
-
# )
|
890 |
-
#
|
891 |
-
# total_contribution_fig.update_traces(textposition='inside', texttemplate='%{percent:.1%}')
|
892 |
-
# total_contribution_fig.update_layout(uniformtext_minsize=12, title='Channel contribution', uniformtext_mode='hide')
|
893 |
-
# return total_contribution_fig
|
894 |
-
|
895 |
-
def create_contribuion_stacked_plot(scenario):
|
896 |
-
weekly_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "bar"}, {"type": "bar"}]])
|
897 |
-
raw_df = st.session_state['raw_df']
|
898 |
-
df = raw_df.sort_values(by='Date')
|
899 |
-
x = df.Date
|
900 |
-
weekly_spends_data = []
|
901 |
-
weekly_sales_data = []
|
902 |
-
|
903 |
-
for i, channel_name in enumerate(st.session_state['channels_list']):
|
904 |
-
color = color_palette[i % len(color_palette)]
|
905 |
-
|
906 |
-
weekly_spends_data.append(go.Bar(
|
907 |
-
x=x,
|
908 |
-
y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
|
909 |
-
name=channel_name_formating(channel_name),
|
910 |
-
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
|
911 |
-
legendgroup=channel_name,
|
912 |
-
marker_color=color,
|
913 |
-
))
|
914 |
-
|
915 |
-
weekly_sales_data.append(go.Bar(
|
916 |
-
x=x,
|
917 |
-
y=scenario.channels[channel_name].actual_sales,
|
918 |
-
name=channel_name_formating(channel_name),
|
919 |
-
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
|
920 |
-
legendgroup=channel_name,
|
921 |
-
showlegend=False,
|
922 |
-
marker_color=color,
|
923 |
-
))
|
924 |
-
|
925 |
-
for _d in weekly_spends_data:
|
926 |
-
weekly_contribution_fig.add_trace(_d, row=1, col=1)
|
927 |
-
for _d in weekly_sales_data:
|
928 |
-
weekly_contribution_fig.add_trace(_d, row=1, col=2)
|
929 |
-
|
930 |
-
weekly_contribution_fig.add_trace(go.Bar(
|
931 |
-
x=x,
|
932 |
-
y=scenario.constant + scenario.correction,
|
933 |
-
name='Non Media',
|
934 |
-
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
|
935 |
-
marker_color=color_palette[-1],
|
936 |
-
), row=1, col=2)
|
937 |
-
|
938 |
-
weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribution by week', xaxis_title='Date')
|
939 |
-
weekly_contribution_fig.update_xaxes(showgrid=False)
|
940 |
-
weekly_contribution_fig.update_yaxes(showgrid=False)
|
941 |
-
return weekly_contribution_fig
|
942 |
-
|
943 |
-
def create_channel_spends_sales_plot(channel):
|
944 |
-
if channel is not None:
|
945 |
-
x = channel.dates
|
946 |
-
_spends = channel.actual_spends * channel.conversion_rate
|
947 |
-
_sales = channel.actual_sales
|
948 |
-
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
|
949 |
-
channel_sales_spends_fig.add_trace(go.Bar(
|
950 |
-
x=x,
|
951 |
-
y=_sales,
|
952 |
-
marker_color=color_palette[1], # You can choose a color from the palette
|
953 |
-
name='Revenue',
|
954 |
-
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
|
955 |
-
), secondary_y=False)
|
956 |
-
|
957 |
-
channel_sales_spends_fig.add_trace(go.Scatter(
|
958 |
-
x=x,
|
959 |
-
y=_spends,
|
960 |
-
line=dict(color=color_palette[3]), # You can choose another color from the palette
|
961 |
-
name='Spends',
|
962 |
-
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
|
963 |
-
), secondary_y=True)
|
964 |
-
|
965 |
-
channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Revenue', yaxis2_title='Spends ($)', title='Channel spends and Revenue week-wise')
|
966 |
-
channel_sales_spends_fig.update_xaxes(showgrid=False)
|
967 |
-
channel_sales_spends_fig.update_yaxes(showgrid=False)
|
968 |
-
else:
|
969 |
-
raw_df = st.session_state['raw_df']
|
970 |
-
df = raw_df.sort_values(by='Date')
|
971 |
-
x = df.Date
|
972 |
-
scenario = class_from_dict(st.session_state['default_scenario_dict'])
|
973 |
-
_sales = scenario.constant + scenario.correction
|
974 |
-
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
|
975 |
-
channel_sales_spends_fig.add_trace(go.Bar(
|
976 |
-
x=x,
|
977 |
-
y=_sales,
|
978 |
-
marker_color=color_palette[0], # You can choose a color from the palette
|
979 |
-
name='Revenue',
|
980 |
-
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
|
981 |
-
), secondary_y=False)
|
982 |
-
|
983 |
-
channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Revenue', yaxis2_title='Spends ($)', title='Channel spends and Revenue week-wise')
|
984 |
-
channel_sales_spends_fig.update_xaxes(showgrid=False)
|
985 |
-
channel_sales_spends_fig.update_yaxes(showgrid=False)
|
986 |
-
|
987 |
-
return channel_sales_spends_fig
|
988 |
-
|
989 |
-
def format_numbers(value, n_decimals=1,include_indicator = True):
|
990 |
-
if include_indicator:
|
991 |
-
return f'{CURRENCY_INDICATOR} {numerize(value,n_decimals)}'
|
992 |
-
else:
|
993 |
-
return f'{numerize(value,n_decimals)}'
|
994 |
-
|
995 |
-
|
996 |
-
def decimal_formater(num_string,n_decimals=1):
|
997 |
-
parts = num_string.split('.')
|
998 |
-
if len(parts) == 1:
|
999 |
-
return num_string+'.' + '0'*n_decimals
|
1000 |
-
else:
|
1001 |
-
to_be_padded = n_decimals - len(parts[-1])
|
1002 |
-
if to_be_padded > 0 :
|
1003 |
-
return num_string+'0'*to_be_padded
|
1004 |
-
else:
|
1005 |
-
return num_string
|
1006 |
-
|
1007 |
-
|
1008 |
-
def channel_name_formating(channel_name):
|
1009 |
-
name_mod = channel_name.replace('_', ' ')
|
1010 |
-
if name_mod.lower().endswith(' imp'):
|
1011 |
-
name_mod = name_mod.replace('Imp','Spend')
|
1012 |
-
elif name_mod.lower().endswith(' clicks'):
|
1013 |
-
name_mod = name_mod.replace('Clicks','Spend')
|
1014 |
-
return name_mod
|
1015 |
-
|
1016 |
-
|
1017 |
-
def send_email(email,message):
|
1018 |
-
s = smtplib.SMTP('smtp.gmail.com', 587)
|
1019 |
-
s.starttls()
|
1020 |
-
s.login("geethu4444@gmail.com", "jgydhpfusuremcol")
|
1021 |
-
s.sendmail("geethu4444@gmail.com", email, message)
|
1022 |
-
s.quit()
|
1023 |
-
|
1024 |
-
if __name__ == "__main__":
|
1025 |
-
initialize_data()
|
|
|
1 |
+
from numerize.numerize import numerize
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import json
|
5 |
+
from classes import Channel, Scenario
|
6 |
+
import numpy as np
|
7 |
+
from plotly.subplots import make_subplots
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
from classes import class_to_dict
|
10 |
+
from collections import OrderedDict
|
11 |
+
import io
|
12 |
+
import plotly
|
13 |
+
from pathlib import Path
|
14 |
+
import pickle
|
15 |
+
import streamlit_authenticator as stauth
|
16 |
+
import yaml
|
17 |
+
from yaml import SafeLoader
|
18 |
+
from streamlit.components.v1 import html
|
19 |
+
import smtplib
|
20 |
+
from scipy.optimize import curve_fit
|
21 |
+
from sklearn.metrics import r2_score
|
22 |
+
from classes import class_from_dict
|
23 |
+
import os
|
24 |
+
import base64
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
color_palette = ['#001f78', '#00b5db', '#f03d14', '#fa6e0a', '#ffbf45']
|
30 |
+
|
31 |
+
|
32 |
+
CURRENCY_INDICATOR = '$'
|
33 |
+
|
34 |
+
def load_authenticator():
|
35 |
+
with open('config.yaml') as file:
|
36 |
+
config = yaml.load(file, Loader=SafeLoader)
|
37 |
+
st.session_state['config'] = config
|
38 |
+
authenticator = stauth.Authenticate(
|
39 |
+
config['credentials'],
|
40 |
+
config['cookie']['name'],
|
41 |
+
config['cookie']['key'],
|
42 |
+
config['cookie']['expiry_days'],
|
43 |
+
config['preauthorized']
|
44 |
+
)
|
45 |
+
st.session_state['authenticator'] = authenticator
|
46 |
+
return authenticator
|
47 |
+
|
48 |
+
def nav_page(page_name, timeout_secs=3):
|
49 |
+
nav_script = """
|
50 |
+
<script type="text/javascript">
|
51 |
+
function attempt_nav_page(page_name, start_time, timeout_secs) {
|
52 |
+
var links = window.parent.document.getElementsByTagName("a");
|
53 |
+
for (var i = 0; i < links.length; i++) {
|
54 |
+
if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) {
|
55 |
+
links[i].click();
|
56 |
+
return;
|
57 |
+
}
|
58 |
+
}
|
59 |
+
var elasped = new Date() - start_time;
|
60 |
+
if (elasped < timeout_secs * 1000) {
|
61 |
+
setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs);
|
62 |
+
} else {
|
63 |
+
alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s).");
|
64 |
+
}
|
65 |
+
}
|
66 |
+
window.addEventListener("load", function() {
|
67 |
+
attempt_nav_page("%s", new Date(), %d);
|
68 |
+
});
|
69 |
+
</script>
|
70 |
+
""" % (page_name, timeout_secs)
|
71 |
+
html(nav_script)
|
72 |
+
|
73 |
+
|
74 |
+
# def load_local_css(file_name):
|
75 |
+
# with open(file_name) as f:
|
76 |
+
# st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
77 |
+
|
78 |
+
|
79 |
+
# def set_header():
|
80 |
+
# return st.markdown(f"""<div class='main-header'>
|
81 |
+
# <h1>MMM LiME</h1>
|
82 |
+
# <img src="https://assets-global.website-files.com/64c8fffb0e95cbc525815b79/64df84637f83a891c1473c51_Vector%20(Stroke).svg ">
|
83 |
+
# </div>""", unsafe_allow_html=True)
|
84 |
+
|
85 |
+
path = os.path.dirname(__file__)
|
86 |
+
|
87 |
+
file_ = open(f"{path}/mastercard_logo.png", "rb")
|
88 |
+
|
89 |
+
contents = file_.read()
|
90 |
+
|
91 |
+
data_url = base64.b64encode(contents).decode("utf-8")
|
92 |
+
|
93 |
+
file_.close()
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
DATA_PATH = './data'
|
98 |
+
|
99 |
+
IMAGES_PATH = './data/images_224_224'
|
100 |
+
|
101 |
+
# New - Sprint 2
|
102 |
+
if 'bin_dict' not in st.session_state:
|
103 |
+
|
104 |
+
with open("data_import.pkl", "rb") as f:
|
105 |
+
data = pickle.load(f)
|
106 |
+
|
107 |
+
st.session_state['bin_dict'] = data["bin_dict"]
|
108 |
+
|
109 |
+
# panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
|
110 |
+
|
111 |
+
panel_col="Panel"
|
112 |
+
|
113 |
+
is_panel = True if len(panel_col)>0 else False
|
114 |
+
|
115 |
+
date_col='Date'
|
116 |
+
#is_panel = False # flag if set to true - do panel level response curves
|
117 |
+
|
118 |
+
def load_local_css(file_name):
|
119 |
+
|
120 |
+
with open(file_name) as f:
|
121 |
+
|
122 |
+
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
# def set_header():
|
129 |
+
|
130 |
+
# return st.markdown(f"""<div class='main-header'>
|
131 |
+
|
132 |
+
# <h1>H & M Recommendations</h1>
|
133 |
+
|
134 |
+
# <img src="data:image;base64,{data_url}", alt="Logo">
|
135 |
+
|
136 |
+
# </div>""", unsafe_allow_html=True)
|
137 |
+
path1 = os.path.dirname(__file__)
|
138 |
+
|
139 |
+
file_1 = open(f"{path}/ALDI_2017.png", "rb")
|
140 |
+
|
141 |
+
contents1 = file_1.read()
|
142 |
+
|
143 |
+
data_url1 = base64.b64encode(contents1).decode("utf-8")
|
144 |
+
|
145 |
+
file_1.close()
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
DATA_PATH1 = './data'
|
150 |
+
|
151 |
+
IMAGES_PATH1 = './data/images_224_224'
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
def set_header():
|
158 |
+
return st.markdown(f"""<div class='main-header'>
|
159 |
+
<!-- <h1></h1> -->
|
160 |
+
<div >
|
161 |
+
<img class='blend-logo' src="data:image;base64,{data_url1}", alt="Logo">
|
162 |
+
</div>""", unsafe_allow_html=True)
|
163 |
+
|
164 |
+
# def set_header():
|
165 |
+
# logo_path = "./path/to/your/local/LIME_logo.png" # Replace with the actual file path
|
166 |
+
# text = "LiME"
|
167 |
+
# return st.markdown(f"""<div class='main-header'>
|
168 |
+
# <img src="data:image/png;base64,{data_url}" alt="Logo" style="float: left; margin-right: 10px; width: 100px; height: auto;">
|
169 |
+
# <h1>{text}</h1>
|
170 |
+
# </div>""", unsafe_allow_html=True)
|
171 |
+
|
172 |
+
|
173 |
+
def s_curve(x,K,b,a,x0):
|
174 |
+
return K / (1 + b * np.exp(-a*(x-x0)))
|
175 |
+
|
176 |
+
|
177 |
+
def overview_test_data_prep_panel(X, df, spends_X, date_col, panel_col, target_col):
|
178 |
+
'''
|
179 |
+
function to create the data which is used in initialize data fn
|
180 |
+
X : X test with contributions
|
181 |
+
df : originally uploaded data (media data) which has raw vars
|
182 |
+
spends_X : spends of dates in X test
|
183 |
+
'''
|
184 |
+
|
185 |
+
# define channels
|
186 |
+
channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'],
|
187 |
+
|
188 |
+
'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions'], #, 'fb:_level_achieved_-_tier_1_clicks'],
|
189 |
+
|
190 |
+
'fb_level_achieved_tier_2': ['fb:_level_achieved_tier_2_impressions',
|
191 |
+
'fb_level_achieved_tier_2_clicks'],
|
192 |
+
|
193 |
+
'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'],
|
194 |
+
|
195 |
+
'ga_app': ['ga_app_impressions', 'ga_app_clicks'],
|
196 |
+
|
197 |
+
'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'],
|
198 |
+
|
199 |
+
'kwai': ['kwai_impressions', 'kwai_clicks'],
|
200 |
+
|
201 |
+
'programmatic': ['programmatic_impressions', 'programmatic_clicks'],
|
202 |
+
|
203 |
+
# 'affiliates':['affiliates_clicks'],
|
204 |
+
#
|
205 |
+
# "indicacao":['indicacao_clicks'],
|
206 |
+
#
|
207 |
+
# "infleux":['infleux_clicks'],
|
208 |
+
#
|
209 |
+
# "influencer":['influencer_clicks']
|
210 |
+
}
|
211 |
+
|
212 |
+
channel_list = list(channels.keys())
|
213 |
+
|
214 |
+
# map transformed variable to raw variable name & channel name
|
215 |
+
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
|
216 |
+
variables = {}
|
217 |
+
channel_and_variables = {}
|
218 |
+
new_variables = {}
|
219 |
+
new_channels_and_variables = {}
|
220 |
+
|
221 |
+
for transformed_var in [col for col in
|
222 |
+
X.drop(columns=[date_col, panel_col, target_col, 'pred', 'panel_effect']).columns if
|
223 |
+
"_contr" not in col]:
|
224 |
+
if len([col for col in df.columns if col in transformed_var]) == 1:
|
225 |
+
raw_var = [col for col in df.columns if col in transformed_var][0]
|
226 |
+
variables[transformed_var] = raw_var
|
227 |
+
channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][
|
228 |
+
0]
|
229 |
+
else:
|
230 |
+
new_variables[transformed_var] = transformed_var
|
231 |
+
new_channels_and_variables[transformed_var] = 'base'
|
232 |
+
|
233 |
+
# Raw DF
|
234 |
+
raw_X = pd.merge(X[[date_col, panel_col]], df[[date_col, panel_col] + list(variables.values())], how='left',
|
235 |
+
on=[date_col, panel_col])
|
236 |
+
assert len(raw_X) == len(X)
|
237 |
+
|
238 |
+
raw_X_cols = []
|
239 |
+
for i in raw_X.columns:
|
240 |
+
if i in channel_and_variables.keys():
|
241 |
+
raw_X_cols.append(channel_and_variables[i])
|
242 |
+
else:
|
243 |
+
raw_X_cols.append(i)
|
244 |
+
raw_X.columns = raw_X_cols
|
245 |
+
|
246 |
+
# Contribution DF
|
247 |
+
contr_X = X[[date_col, panel_col, 'panel_effect'] + [col for col in X.columns if
|
248 |
+
"_contr" in col and "sum_" not in col]].copy()
|
249 |
+
new_variables = [col for col in contr_X.columns if
|
250 |
+
"_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()]
|
251 |
+
if len(new_variables) > 0:
|
252 |
+
contr_X['const'] = contr_X[['panel_effect'] + new_variables].sum(axis=1)
|
253 |
+
contr_X.drop(columns=['panel_effect'], inplace=True)
|
254 |
+
contr_X.drop(columns=new_variables, inplace=True)
|
255 |
+
else:
|
256 |
+
contr_X.rename(columns={'panel_effect': 'const'}, inplace=True)
|
257 |
+
|
258 |
+
new_contr_X_cols = []
|
259 |
+
for col in contr_X.columns:
|
260 |
+
col_clean = col.replace("_contr", "")
|
261 |
+
new_contr_X_cols.append(col_clean)
|
262 |
+
contr_X.columns = new_contr_X_cols
|
263 |
+
|
264 |
+
contr_X_cols = []
|
265 |
+
for i in contr_X.columns:
|
266 |
+
if i in variables.keys():
|
267 |
+
contr_X_cols.append(channel_and_variables[variables[i]])
|
268 |
+
else:
|
269 |
+
contr_X_cols.append(i)
|
270 |
+
contr_X.columns = contr_X_cols
|
271 |
+
|
272 |
+
# Spends DF
|
273 |
+
spends_X.columns = [col.replace("_cost", "") for col in spends_X.columns]
|
274 |
+
|
275 |
+
raw_X.rename(columns={"date": "Date"}, inplace=True)
|
276 |
+
contr_X.rename(columns={"date": "Date"}, inplace=True)
|
277 |
+
spends_X.rename(columns={'date': 'Week'}, inplace=True)
|
278 |
+
|
279 |
+
# Create excel
|
280 |
+
file_name = "data_test_overview_panel_#" + target_col + ".xlsx"
|
281 |
+
with pd.ExcelWriter(file_name) as writer:
|
282 |
+
raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False)
|
283 |
+
contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False)
|
284 |
+
spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False)
|
285 |
+
|
286 |
+
|
287 |
+
def overview_test_data_prep_nonpanel(X, df, spends_X, date_col, target_col):
|
288 |
+
'''
|
289 |
+
function to create the data which is used in initialize data fn
|
290 |
+
X : X test with contributions
|
291 |
+
df : originally uploaded data (media data) which has raw vars
|
292 |
+
spends_X : spends of dates in X test
|
293 |
+
'''
|
294 |
+
# define channels
|
295 |
+
channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'],
|
296 |
+
|
297 |
+
'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions', 'fb_level_achieved_tier_1_clicks'],
|
298 |
+
|
299 |
+
'fb_level_achieved_tier_2': ['fb_level_achieved_tier_2_impressions',
|
300 |
+
'fb_level_achieved_tier_2_clicks'],
|
301 |
+
|
302 |
+
'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'],
|
303 |
+
|
304 |
+
'ga_app_will_and_cid_pequena_baixo_risco': ['ga_app_will_and_cid_pequena_baixo_risco_impressions', 'ga_app_will_and_cid_pequena_baixo_risco_clicks'],
|
305 |
+
|
306 |
+
'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'],
|
307 |
+
|
308 |
+
'kwai': ['kwai_impressions', 'kwai_clicks'],
|
309 |
+
|
310 |
+
'programmatic': ['programmatic_impressions', 'programmatic_clicks'],
|
311 |
+
|
312 |
+
'affiliates':['affiliates_clicks', 'affiliates_impressions'],
|
313 |
+
|
314 |
+
"indicacao":['indicacao_clicks', 'indicacao_impressions'],
|
315 |
+
|
316 |
+
"infleux":['infleux_clicks', 'infleux_impressions'],
|
317 |
+
|
318 |
+
"influencer":['influencer_clicks', 'influencer_impressions']
|
319 |
+
}
|
320 |
+
|
321 |
+
channel_list = list(channels.keys())
|
322 |
+
|
323 |
+
# map transformed variable to raw variable name & channel name
|
324 |
+
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
|
325 |
+
variables = {}
|
326 |
+
channel_and_variables = {}
|
327 |
+
new_variables = {}
|
328 |
+
new_channels_and_variables = {}
|
329 |
+
|
330 |
+
cols_to_del = list(set([date_col, target_col, 'pred']).intersection((set(X.columns))))
|
331 |
+
for transformed_var in [col for col in
|
332 |
+
X.drop(columns=cols_to_del).columns if
|
333 |
+
"_contr" not in col]: # also has 'const'
|
334 |
+
if len([col for col in df.columns if col in transformed_var]) == 1: # col is raw var
|
335 |
+
raw_var = [col for col in df.columns if col in transformed_var][0]
|
336 |
+
variables[transformed_var] = raw_var
|
337 |
+
channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][0]
|
338 |
+
else: # when no corresponding raw var then base
|
339 |
+
new_variables[transformed_var] = transformed_var
|
340 |
+
new_channels_and_variables[transformed_var] = 'base'
|
341 |
+
|
342 |
+
# Raw DF
|
343 |
+
raw_X = pd.merge(X[[date_col]], df[[date_col] + list(variables.values())], how='left',
|
344 |
+
on=[date_col])
|
345 |
+
assert len(raw_X) == len(X)
|
346 |
+
|
347 |
+
raw_X_cols = []
|
348 |
+
for i in raw_X.columns:
|
349 |
+
if i in channel_and_variables.keys():
|
350 |
+
raw_X_cols.append(channel_and_variables[i])
|
351 |
+
else:
|
352 |
+
raw_X_cols.append(i)
|
353 |
+
raw_X.columns = raw_X_cols
|
354 |
+
|
355 |
+
# Contribution DF
|
356 |
+
contr_X = X[[date_col] + [col for col in X.columns if "_contr" in col and "sum_" not in col]].copy()
|
357 |
+
# st.write(contr_X.columns)
|
358 |
+
new_variables = [col for col in contr_X.columns if
|
359 |
+
"_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()]
|
360 |
+
if len(new_variables) > 0: # if new vars are available, their contributions should be added to base (called const)
|
361 |
+
contr_X['const_contr'] = contr_X[['const_contr'] + new_variables].sum(axis=1)
|
362 |
+
contr_X.drop(columns=new_variables, inplace=True)
|
363 |
+
|
364 |
+
|
365 |
+
new_contr_X_cols = []
|
366 |
+
for col in contr_X.columns:
|
367 |
+
col_clean = col.replace("_contr", "")
|
368 |
+
new_contr_X_cols.append(col_clean)
|
369 |
+
contr_X.columns = new_contr_X_cols
|
370 |
+
|
371 |
+
contr_X_cols = []
|
372 |
+
for i in contr_X.columns:
|
373 |
+
if i in variables.keys():
|
374 |
+
contr_X_cols.append(channel_and_variables[variables[i]])
|
375 |
+
else:
|
376 |
+
contr_X_cols.append(i)
|
377 |
+
contr_X.columns = contr_X_cols
|
378 |
+
|
379 |
+
# Spends DF
|
380 |
+
spends_X.columns = [col.replace("_cost", "").replace("_spends", '').replace("_spend", "") for col in spends_X.columns]
|
381 |
+
|
382 |
+
raw_X.rename(columns={"date": "Date"}, inplace=True)
|
383 |
+
contr_X.rename(columns={"date": "Date"}, inplace=True)
|
384 |
+
spends_X.rename(columns={'date': 'Week'}, inplace=True)
|
385 |
+
|
386 |
+
# Create excel
|
387 |
+
file_name = "data_test_overview_panel_#" + target_col + ".xlsx"
|
388 |
+
with pd.ExcelWriter(file_name) as writer:
|
389 |
+
raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False)
|
390 |
+
contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False)
|
391 |
+
spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False)
|
392 |
+
|
393 |
+
|
394 |
+
def initialize_data(target_col,selected_markets):
|
395 |
+
# uopx_conv_rates = {'streaming_impressions' : 0.007,'digital_impressions' : 0.007,'search_clicks' : 0.00719,'tv_impressions' : 0.000173,
|
396 |
+
# "digital_clicks":0.005,"streaming_clicks":0.004,'streaming_spends':1,"tv_spends":1,"search_spends":1,
|
397 |
+
# "digital_spends":1}
|
398 |
+
#print('State initialized')
|
399 |
+
# excel = pd.read_excel("data_test_overview_panel.xlsx",sheet_name=None)
|
400 |
+
#excel = pd.read_excel("Overview_data_test_panel@#revenue.xlsx" + target_col + ".xlsx",sheet_name=None)
|
401 |
+
|
402 |
+
excel = pd.read_excel("Overview_data_test_panel@#revenue.xlsx",sheet_name=None)
|
403 |
+
|
404 |
+
raw_df = excel['RAW DATA MMM']
|
405 |
+
|
406 |
+
spend_df = excel['SPEND INPUT']
|
407 |
+
contri_df = excel['CONTRIBUTION MMM']
|
408 |
+
|
409 |
+
#st.write(raw_df)
|
410 |
+
if selected_markets!= "Total Market":
|
411 |
+
|
412 |
+
raw_df=raw_df[raw_df['Panel']==selected_markets]
|
413 |
+
spend_df=spend_df[spend_df['Panel']==selected_markets]
|
414 |
+
contri_df=contri_df[contri_df['Panel']==selected_markets]
|
415 |
+
|
416 |
+
else:
|
417 |
+
raw_df=raw_df.groupby('Date').sum().reset_index()
|
418 |
+
spend_df=spend_df.groupby('Week').sum().reset_index()
|
419 |
+
contri_df=contri_df.groupby('Date').sum().reset_index()
|
420 |
+
#Revenue_df = excel['Revenue']
|
421 |
+
|
422 |
+
## remove sesonalities, indices etc ...
|
423 |
+
exclude_columns = ['Date', 'Week','Panel',date_col, panel_col,'Others'
|
424 |
+
]
|
425 |
+
|
426 |
+
# Aggregate all 3 dfs to date level (from date-panel level)
|
427 |
+
raw_df[date_col]=pd.to_datetime(raw_df[date_col])
|
428 |
+
raw_df_aggregations = {c:'sum' for c in raw_df.columns if c not in exclude_columns}
|
429 |
+
raw_df = raw_df.groupby(date_col).agg(raw_df_aggregations).reset_index()
|
430 |
+
|
431 |
+
contri_df[date_col]=pd.to_datetime(contri_df[date_col])
|
432 |
+
contri_df_aggregations = {c:'sum' for c in contri_df.columns if c not in exclude_columns}
|
433 |
+
contri_df = contri_df.groupby(date_col).agg(contri_df_aggregations).reset_index()
|
434 |
+
|
435 |
+
input_df = raw_df.sort_values(by=[date_col])
|
436 |
+
|
437 |
+
output_df = contri_df.sort_values(by=[date_col])
|
438 |
+
|
439 |
+
spend_df['Week'] = pd.to_datetime(spend_df['Week'], format='%Y-%m-%d', errors='coerce')
|
440 |
+
spend_df_aggregations = {c: 'sum' for c in spend_df.columns if c not in exclude_columns}
|
441 |
+
spend_df = spend_df.groupby('Week').agg(spend_df_aggregations).reset_index()
|
442 |
+
# spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce')
|
443 |
+
# spend_df = spend_df.sort_values(by='Week')
|
444 |
+
|
445 |
+
|
446 |
+
channel_list = [col for col in input_df.columns if col not in exclude_columns]
|
447 |
+
|
448 |
+
response_curves = {}
|
449 |
+
mapes = {}
|
450 |
+
rmses = {}
|
451 |
+
upper_limits = {}
|
452 |
+
powers = {}
|
453 |
+
r2 = {}
|
454 |
+
conv_rates = {}
|
455 |
+
output_cols = []
|
456 |
+
channels = {}
|
457 |
+
sales = None
|
458 |
+
dates = input_df.Date.values
|
459 |
+
actual_output_dic = {}
|
460 |
+
actual_input_dic = {}
|
461 |
+
|
462 |
+
# ONLY FOR TESTING
|
463 |
+
# channel_list=['programmatic']
|
464 |
+
infeasible_channels = [c for c in contri_df.select_dtypes(include=['float', 'int']).columns if contri_df[c].sum()<=0]
|
465 |
+
# st.write(infeasible_channels)
|
466 |
+
channel_list=list(set(channel_list)-set(infeasible_channels))
|
467 |
+
|
468 |
+
|
469 |
+
for inp_col in channel_list:
|
470 |
+
#st.write(inp_col)
|
471 |
+
|
472 |
+
# # New - Sprint 2
|
473 |
+
# if is_panel:
|
474 |
+
# input_df1 = input_df.groupby([date_col]).agg({inp_col:'sum'}).reset_index() # aggregate spends on date
|
475 |
+
# spends = input_df1[inp_col].values
|
476 |
+
# else :
|
477 |
+
# spends = input_df[inp_col].values
|
478 |
+
spends = spend_df[inp_col].values
|
479 |
+
|
480 |
+
x = spends.copy()
|
481 |
+
# upper limit for penalty
|
482 |
+
upper_limits[inp_col] = 2*x.max()
|
483 |
+
|
484 |
+
|
485 |
+
|
486 |
+
# contribution
|
487 |
+
# New - Sprint 2
|
488 |
+
out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0]
|
489 |
+
if is_panel :
|
490 |
+
output_df1 = output_df.groupby([date_col]).agg({out_col:'sum'}).reset_index()
|
491 |
+
y = output_df1[out_col].values.copy()
|
492 |
+
else :
|
493 |
+
y = output_df[out_col].values.copy()
|
494 |
+
|
495 |
+
actual_output_dic[inp_col] = y.copy()
|
496 |
+
actual_input_dic[inp_col] = x.copy()
|
497 |
+
##output cols aggregation
|
498 |
+
output_cols.append(out_col)
|
499 |
+
|
500 |
+
## scale the input
|
501 |
+
power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)
|
502 |
+
if power >= 0 :
|
503 |
+
x = x / 10**power
|
504 |
+
|
505 |
+
|
506 |
+
x = x.astype('float64')
|
507 |
+
y = y.astype('float64')
|
508 |
+
#print('#printing yyyyyyyyy')
|
509 |
+
#print(inp_col)
|
510 |
+
#print(x.max())
|
511 |
+
#print(y.max())
|
512 |
+
# st.write(y.max(),x.max())
|
513 |
+
print(y.max(),x.max())
|
514 |
+
if y.max()<=0.01:
|
515 |
+
if x.max()<=0.01 :
|
516 |
+
st.write("here-here")
|
517 |
+
bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))
|
518 |
+
|
519 |
+
else :
|
520 |
+
st.write("here")
|
521 |
+
bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))
|
522 |
+
else :
|
523 |
+
bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max()))
|
524 |
+
#bounds = ((y.max(), 3*y.max()),(0,1000),(0,1),(0,x.max()))
|
525 |
+
params,_ = curve_fit(s_curve,x,y,p0=(2*y.max(),0.01,1e-5,x.max()),
|
526 |
+
bounds=bounds,
|
527 |
+
maxfev=int(1e5))
|
528 |
+
mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean()
|
529 |
+
rmse = np.sqrt(((y - s_curve(x,*params))**2).mean())
|
530 |
+
r2_ = r2_score(y, s_curve(x,*params))
|
531 |
+
|
532 |
+
response_curves[inp_col] = {'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]}
|
533 |
+
mapes[inp_col] = mape
|
534 |
+
rmses[inp_col] = rmse
|
535 |
+
r2[inp_col] = r2_
|
536 |
+
powers[inp_col] = power
|
537 |
+
|
538 |
+
|
539 |
+
## conversion rates
|
540 |
+
spend_col = [_col for _col in spend_df.columns if _col.startswith(inp_col.rsplit('_',1)[0])][0]
|
541 |
+
|
542 |
+
#print('#printing spendssss')
|
543 |
+
#print(spend_col)
|
544 |
+
conv = (spend_df.set_index('Week')[spend_col] / input_df.set_index('Date')[inp_col].clip(lower=1)).reset_index()
|
545 |
+
conv.rename(columns={'index':'Week'},inplace=True)
|
546 |
+
conv['year'] = conv.Week.dt.year
|
547 |
+
conv_rates[inp_col] = list(conv.drop('Week',axis=1).mean().to_dict().values())[0]
|
548 |
+
##print('Before',conv_rates[inp_col])
|
549 |
+
# conv_rates[inp_col] = uopx_conv_rates[inp_col]
|
550 |
+
##print('After',(conv_rates[inp_col]))
|
551 |
+
|
552 |
+
|
553 |
+
channel = Channel(name=inp_col,dates=dates,
|
554 |
+
spends=spends,
|
555 |
+
# conversion_rate = np.mean(list(conv_rates[inp_col].values())),
|
556 |
+
conversion_rate = conv_rates[inp_col],
|
557 |
+
response_curve_type='s-curve',
|
558 |
+
response_curve_params={'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]},
|
559 |
+
bounds=np.array([-10,10]))
|
560 |
+
channels[inp_col] = channel
|
561 |
+
if sales is None:
|
562 |
+
sales = channel.actual_sales
|
563 |
+
else:
|
564 |
+
sales += channel.actual_sales
|
565 |
+
# st.write(inp_col, channel.actual_sales)
|
566 |
+
# st.write(output_cols)
|
567 |
+
other_contributions = output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only = True).values
|
568 |
+
correction = output_df.drop(['Date'],axis=1).sum(axis=1).values - (sales + other_contributions)
|
569 |
+
|
570 |
+
scenario_test_df=pd.DataFrame(columns=['other_contributions','correction', 'sales'])
|
571 |
+
scenario_test_df['other_contributions']=other_contributions
|
572 |
+
scenario_test_df['correction']=correction
|
573 |
+
scenario_test_df['sales']=sales
|
574 |
+
scenario_test_df.to_csv("test/scenario_test_df.csv",index=False)
|
575 |
+
output_df.to_csv("test/output_df.csv",index=False)
|
576 |
+
|
577 |
+
scenario = Scenario(name='default', channels=channels, constant=other_contributions, correction = correction)
|
578 |
+
## setting session variables
|
579 |
+
st.session_state['initialized'] = True
|
580 |
+
st.session_state['actual_df'] = input_df
|
581 |
+
st.session_state['raw_df'] = raw_df
|
582 |
+
st.session_state['contri_df'] = output_df
|
583 |
+
default_scenario_dict = class_to_dict(scenario)
|
584 |
+
st.session_state['default_scenario_dict'] = default_scenario_dict
|
585 |
+
st.session_state['scenario'] = scenario
|
586 |
+
st.session_state['channels_list'] = channel_list
|
587 |
+
st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
|
588 |
+
st.session_state['rcs'] = response_curves
|
589 |
+
st.session_state['powers'] = powers
|
590 |
+
st.session_state['actual_contribution_df'] = pd.DataFrame(actual_output_dic)
|
591 |
+
st.session_state['actual_input_df'] = pd.DataFrame(actual_input_dic)
|
592 |
+
|
593 |
+
for channel in channels.values():
|
594 |
+
st.session_state[channel.name] = numerize(channel.actual_total_spends * channel.conversion_rate,1)
|
595 |
+
|
596 |
+
st.session_state['xlsx_buffer'] = io.BytesIO()
|
597 |
+
|
598 |
+
|
599 |
+
if Path('../saved_scenarios.pkl').exists():
|
600 |
+
with open('../saved_scenarios.pkl','rb') as f:
|
601 |
+
st.session_state['saved_scenarios'] = pickle.load(f)
|
602 |
+
else:
|
603 |
+
st.session_state['saved_scenarios'] = OrderedDict()
|
604 |
+
|
605 |
+
st.session_state['total_spends_change'] = 0
|
606 |
+
st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
|
607 |
+
st.session_state['disable_download_button'] = True
|
608 |
+
|
609 |
+
# def initialize_data():
|
610 |
+
# # fetch data from excel
|
611 |
+
# output = pd.read_excel('data.xlsx',sheet_name=None)
|
612 |
+
# raw_df = output['RAW DATA MMM']
|
613 |
+
# contribution_df = output['CONTRIBUTION MMM']
|
614 |
+
# Revenue_df = output['Revenue']
|
615 |
+
|
616 |
+
# ## channels to be shows
|
617 |
+
# channel_list = []
|
618 |
+
# for col in raw_df.columns:
|
619 |
+
# if 'click' in col.lower() or 'spend' in col.lower() or 'imp' in col.lower():
|
620 |
+
# ##print(col)
|
621 |
+
# channel_list.append(col)
|
622 |
+
# else:
|
623 |
+
# pass
|
624 |
+
|
625 |
+
# ## NOTE : Considered only Desktop spends for all calculations
|
626 |
+
# acutal_df = raw_df[raw_df.Region == 'Desktop'].copy()
|
627 |
+
# ## NOTE : Considered one year of data
|
628 |
+
# acutal_df = acutal_df[acutal_df.Date>'2020-12-31']
|
629 |
+
# actual_df = acutal_df.drop('Region',axis=1).sort_values(by='Date')[[*channel_list,'Date']]
|
630 |
+
|
631 |
+
# ##load response curves
|
632 |
+
# with open('./grammarly_response_curves.json','r') as f:
|
633 |
+
# response_curves = json.load(f)
|
634 |
+
|
635 |
+
# ## create channel dict for scenario creation
|
636 |
+
# dates = actual_df.Date.values
|
637 |
+
# channels = {}
|
638 |
+
# rcs = {}
|
639 |
+
# constant = 0.
|
640 |
+
# for i,info_dict in enumerate(response_curves):
|
641 |
+
# name = info_dict.get('name')
|
642 |
+
# response_curve_type = info_dict.get('response_curve')
|
643 |
+
# response_curve_params = info_dict.get('params')
|
644 |
+
# rcs[name] = response_curve_params
|
645 |
+
# if name != 'constant':
|
646 |
+
# spends = actual_df[name].values
|
647 |
+
# channel = Channel(name=name,dates=dates,
|
648 |
+
# spends=spends,
|
649 |
+
# response_curve_type=response_curve_type,
|
650 |
+
# response_curve_params=response_curve_params,
|
651 |
+
# bounds=np.array([-30,30]))
|
652 |
+
|
653 |
+
# channels[name] = channel
|
654 |
+
# else:
|
655 |
+
# constant = info_dict.get('value',0.) * len(dates)
|
656 |
+
|
657 |
+
# ## create scenario
|
658 |
+
# scenario = Scenario(name='default', channels=channels, constant=constant)
|
659 |
+
# default_scenario_dict = class_to_dict(scenario)
|
660 |
+
|
661 |
+
|
662 |
+
# ## setting session variables
|
663 |
+
# st.session_state['initialized'] = True
|
664 |
+
# st.session_state['actual_df'] = actual_df
|
665 |
+
# st.session_state['raw_df'] = raw_df
|
666 |
+
# st.session_state['default_scenario_dict'] = default_scenario_dict
|
667 |
+
# st.session_state['scenario'] = scenario
|
668 |
+
# st.session_state['channels_list'] = channel_list
|
669 |
+
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
|
670 |
+
# st.session_state['rcs'] = rcs
|
671 |
+
# for channel in channels.values():
|
672 |
+
# if channel.name not in st.session_state:
|
673 |
+
# st.session_state[channel.name] = float(channel.actual_total_spends)
|
674 |
+
|
675 |
+
# if 'xlsx_buffer' not in st.session_state:
|
676 |
+
# st.session_state['xlsx_buffer'] = io.BytesIO()
|
677 |
+
|
678 |
+
# ## for saving scenarios
|
679 |
+
# if 'saved_scenarios' not in st.session_state:
|
680 |
+
# if Path('../saved_scenarios.pkl').exists():
|
681 |
+
# with open('../saved_scenarios.pkl','rb') as f:
|
682 |
+
# st.session_state['saved_scenarios'] = pickle.load(f)
|
683 |
+
|
684 |
+
# else:
|
685 |
+
# st.session_state['saved_scenarios'] = OrderedDict()
|
686 |
+
|
687 |
+
# if 'total_spends_change' not in st.session_state:
|
688 |
+
# st.session_state['total_spends_change'] = 0
|
689 |
+
|
690 |
+
# if 'optimization_channels' not in st.session_state:
|
691 |
+
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
|
692 |
+
|
693 |
+
# if 'disable_download_button' not in st.session_state:
|
694 |
+
# st.session_state['disable_download_button'] = True
|
695 |
+
def create_channel_summary(scenario):
|
696 |
+
summary_columns = []
|
697 |
+
|
698 |
+
actual_spends_rows = []
|
699 |
+
|
700 |
+
actual_sales_rows = []
|
701 |
+
|
702 |
+
actual_roi_rows = []
|
703 |
+
|
704 |
+
for channel in scenario.channels.values():
|
705 |
+
|
706 |
+
name_mod = channel.name.replace('_', ' ')
|
707 |
+
|
708 |
+
if name_mod.lower().endswith(' imp'):
|
709 |
+
name_mod = name_mod.replace('Imp', ' Impressions')
|
710 |
+
|
711 |
+
print(name_mod, channel.actual_total_spends, channel.conversion_rate,
|
712 |
+
channel.actual_total_spends * channel.conversion_rate)
|
713 |
+
|
714 |
+
summary_columns.append(name_mod)
|
715 |
+
|
716 |
+
actual_spends_rows.append(format_numbers(float(channel.actual_total_spends * channel.conversion_rate)))
|
717 |
+
|
718 |
+
actual_sales_rows.append(format_numbers((float(channel.actual_total_sales))))
|
719 |
+
|
720 |
+
actual_roi_rows.append(decimal_formater(
|
721 |
+
format_numbers((channel.actual_total_sales) / (channel.actual_total_spends * channel.conversion_rate),
|
722 |
+
include_indicator=False, n_decimals=4), n_decimals=4))
|
723 |
+
|
724 |
+
actual_summary_df = pd.DataFrame([summary_columns, actual_spends_rows, actual_sales_rows, actual_roi_rows]).T
|
725 |
+
|
726 |
+
actual_summary_df.columns = ['Channel', 'Spends', 'Revenue', 'ROI']
|
727 |
+
|
728 |
+
actual_summary_df['Revenue'] = actual_summary_df['Revenue'].map(lambda x: str(x)[1:])
|
729 |
+
|
730 |
+
return actual_summary_df
|
731 |
+
|
732 |
+
|
733 |
+
# def create_channel_summary(scenario):
|
734 |
+
#
|
735 |
+
# # Provided data
|
736 |
+
# data = {
|
737 |
+
# 'Channel': ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer'],
|
738 |
+
# 'Spends': ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'],
|
739 |
+
# 'Revenue': ['558.0K', '3.5M', '5.2M', '3.1M', '3.1M', '2.1M', '20.8M', '1.6M', '728.4K', '22.9M', '4.8M']
|
740 |
+
# }
|
741 |
+
#
|
742 |
+
# # Create DataFrame
|
743 |
+
# df = pd.DataFrame(data)
|
744 |
+
#
|
745 |
+
# # Convert currency strings to numeric values
|
746 |
+
# df['Spends'] = df['Spends'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
|
747 |
+
# df['Revenue'] = df['Revenue'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
|
748 |
+
#
|
749 |
+
# # Calculate ROI
|
750 |
+
# df['ROI'] = ((df['Revenue'] - df['Spends']) / df['Spends'])
|
751 |
+
#
|
752 |
+
# # Format columns
|
753 |
+
# format_currency = lambda x: f"${x:,.1f}"
|
754 |
+
# format_roi = lambda x: f"{x:.1f}"
|
755 |
+
#
|
756 |
+
# df['Spends'] = ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K']
|
757 |
+
# df['Revenue'] = ['$ 536.3K', '$ 3.4M', '$ 5M', '$ 3M', '$ 3M', '$ 2M', '$ 20M', '$ 1.5M', '$ 7.1M', '$ 22M', '$ 4.6M']
|
758 |
+
# df['ROI'] = df['ROI'].apply(format_roi)
|
759 |
+
#
|
760 |
+
# return df
|
761 |
+
|
762 |
+
|
763 |
+
#@st.cache_data()
|
764 |
+
def create_contribution_pie(scenario):
|
765 |
+
#c1f7dc
|
766 |
+
|
767 |
+
light_blue = 'rgba(0, 31, 120, 0.7)'
|
768 |
+
light_orange = 'rgba(0, 181, 219, 0.7)'
|
769 |
+
light_green = 'rgba(240, 61, 20, 0.7)'
|
770 |
+
light_red = 'rgba(250, 110, 10, 0.7)'
|
771 |
+
light_purple = 'rgba(255, 191, 69, 0.7)'
|
772 |
+
|
773 |
+
colors_map = {col:color for col,color in zip(st.session_state['channels_list'],plotly.colors.n_colors(plotly.colors.hex_to_rgb('#BE6468'), plotly.colors.hex_to_rgb('#E7B8B7'),23))}
|
774 |
+
total_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Media Spends','Revenue Contribution'],specs=[[{"type": "pie"}, {"type": "pie"}]])
|
775 |
+
total_contribution_fig.add_trace(
|
776 |
+
go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
|
777 |
+
values= [round(scenario.channels[channel_name].actual_total_spends * scenario.channels[channel_name].conversion_rate,1) for channel_name in st.session_state['channels_list']] + [0],
|
778 |
+
marker_colors=[light_blue, light_orange, light_green, light_red, light_purple],
|
779 |
+
hole=0.3),
|
780 |
+
row=1, col=1)
|
781 |
+
|
782 |
+
total_contribution_fig.add_trace(
|
783 |
+
go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
|
784 |
+
values= [scenario.channels[channel_name].actual_total_sales for channel_name in st.session_state['channels_list']] + [scenario.correction.sum() + scenario.constant.sum()],
|
785 |
+
hole=0.3),
|
786 |
+
row=1, col=2)
|
787 |
+
|
788 |
+
total_contribution_fig.update_traces(textposition='inside',texttemplate='%{percent:.1%}')
|
789 |
+
total_contribution_fig.update_layout(uniformtext_minsize=12,title='', uniformtext_mode='hide')
|
790 |
+
return total_contribution_fig
|
791 |
+
|
792 |
+
#@st.cache_data()
|
793 |
+
|
794 |
+
# def create_contribuion_stacked_plot(scenario):
|
795 |
+
# weekly_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "bar"}, {"type": "bar"}]])
|
796 |
+
# raw_df = st.session_state['raw_df']
|
797 |
+
# df = raw_df.sort_values(by='Date')
|
798 |
+
# x = df.Date
|
799 |
+
# weekly_spends_data = []
|
800 |
+
# weekly_sales_data = []
|
801 |
+
# for channel_name in st.session_state['channels_list']:
|
802 |
+
# weekly_spends_data.append((go.Bar(x=x,
|
803 |
+
# y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
|
804 |
+
# name=channel_name_formating(channel_name),
|
805 |
+
# hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
|
806 |
+
# legendgroup=channel_name)))
|
807 |
+
# weekly_sales_data.append((go.Bar(x=x,
|
808 |
+
# y=scenario.channels[channel_name].actual_sales,
|
809 |
+
# name=channel_name_formating(channel_name),
|
810 |
+
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
|
811 |
+
# legendgroup=channel_name, showlegend=False)))
|
812 |
+
# for _d in weekly_spends_data:
|
813 |
+
# weekly_contribution_fig.add_trace(_d, row=1, col=1)
|
814 |
+
# for _d in weekly_sales_data:
|
815 |
+
# weekly_contribution_fig.add_trace(_d, row=1, col=2)
|
816 |
+
# weekly_contribution_fig.add_trace(go.Bar(x=x,
|
817 |
+
# y=scenario.constant + scenario.correction,
|
818 |
+
# name='Non Media',
|
819 |
+
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), row=1, col=2)
|
820 |
+
# weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribuion by week', xaxis_title='Date')
|
821 |
+
# weekly_contribution_fig.update_xaxes(showgrid=False)
|
822 |
+
# weekly_contribution_fig.update_yaxes(showgrid=False)
|
823 |
+
# return weekly_contribution_fig
|
824 |
+
|
825 |
+
# @st.cache_data(allow_output_mutation=True)
|
826 |
+
# def create_channel_spends_sales_plot(channel):
|
827 |
+
# if channel is not None:
|
828 |
+
# x = channel.dates
|
829 |
+
# _spends = channel.actual_spends * channel.conversion_rate
|
830 |
+
# _sales = channel.actual_sales
|
831 |
+
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
|
832 |
+
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
|
833 |
+
# channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#005b96'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
|
834 |
+
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
|
835 |
+
# channel_sales_spends_fig.update_xaxes(showgrid=False)
|
836 |
+
# channel_sales_spends_fig.update_yaxes(showgrid=False)
|
837 |
+
# else:
|
838 |
+
# raw_df = st.session_state['raw_df']
|
839 |
+
# df = raw_df.sort_values(by='Date')
|
840 |
+
# x = df.Date
|
841 |
+
# scenario = class_from_dict(st.session_state['default_scenario_dict'])
|
842 |
+
# _sales = scenario.constant + scenario.correction
|
843 |
+
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
|
844 |
+
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
|
845 |
+
# # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#15C39A'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
|
846 |
+
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
|
847 |
+
# channel_sales_spends_fig.update_xaxes(showgrid=False)
|
848 |
+
# channel_sales_spends_fig.update_yaxes(showgrid=False)
|
849 |
+
# return channel_sales_spends_fig
|
850 |
+
|
851 |
+
|
852 |
+
# Define a shared color palette
|
853 |
+
|
854 |
+
|
855 |
+
# def create_contribution_pie():
|
856 |
+
# color_palette = ['#F3F3F0', '#5E7D7E', '#2FA1FF', '#00EDED', '#00EAE4', '#304550', '#EDEBEB', '#7FBEFD', '#003059', '#A2F3F3', '#E1D6E2', '#B6B6B6']
|
857 |
+
# total_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "pie"}, {"type": "pie"}]])
|
858 |
+
#
|
859 |
+
# channels_list = ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer', 'Non Media']
|
860 |
+
#
|
861 |
+
# # Assign colors from the limited palette to channels
|
862 |
+
# colors_map = {col: color_palette[i % len(color_palette)] for i, col in enumerate(channels_list)}
|
863 |
+
# colors_map['Non Media'] = color_palette[5] # Assign fixed green color for 'Non Media'
|
864 |
+
#
|
865 |
+
# # Hardcoded values for Spends and Revenue
|
866 |
+
# spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0]
|
867 |
+
# revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16]
|
868 |
+
#
|
869 |
+
# # Add trace for Spends pie chart
|
870 |
+
# total_contribution_fig.add_trace(
|
871 |
+
# go.Pie(
|
872 |
+
# labels=[channel_name for channel_name in channels_list],
|
873 |
+
# values=spends_values,
|
874 |
+
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
|
875 |
+
# hole=0.3
|
876 |
+
# ),
|
877 |
+
# row=1, col=1
|
878 |
+
# )
|
879 |
+
#
|
880 |
+
# # Add trace for Revenue pie chart
|
881 |
+
# total_contribution_fig.add_trace(
|
882 |
+
# go.Pie(
|
883 |
+
# labels=[channel_name for channel_name in channels_list],
|
884 |
+
# values=revenue_values,
|
885 |
+
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
|
886 |
+
# hole=0.3
|
887 |
+
# ),
|
888 |
+
# row=1, col=2
|
889 |
+
# )
|
890 |
+
#
|
891 |
+
# total_contribution_fig.update_traces(textposition='inside', texttemplate='%{percent:.1%}')
|
892 |
+
# total_contribution_fig.update_layout(uniformtext_minsize=12, title='Channel contribution', uniformtext_mode='hide')
|
893 |
+
# return total_contribution_fig
|
894 |
+
|
895 |
+
def create_contribuion_stacked_plot(scenario):
|
896 |
+
weekly_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "bar"}, {"type": "bar"}]])
|
897 |
+
raw_df = st.session_state['raw_df']
|
898 |
+
df = raw_df.sort_values(by='Date')
|
899 |
+
x = df.Date
|
900 |
+
weekly_spends_data = []
|
901 |
+
weekly_sales_data = []
|
902 |
+
|
903 |
+
for i, channel_name in enumerate(st.session_state['channels_list']):
|
904 |
+
color = color_palette[i % len(color_palette)]
|
905 |
+
|
906 |
+
weekly_spends_data.append(go.Bar(
|
907 |
+
x=x,
|
908 |
+
y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
|
909 |
+
name=channel_name_formating(channel_name),
|
910 |
+
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
|
911 |
+
legendgroup=channel_name,
|
912 |
+
marker_color=color,
|
913 |
+
))
|
914 |
+
|
915 |
+
weekly_sales_data.append(go.Bar(
|
916 |
+
x=x,
|
917 |
+
y=scenario.channels[channel_name].actual_sales,
|
918 |
+
name=channel_name_formating(channel_name),
|
919 |
+
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
|
920 |
+
legendgroup=channel_name,
|
921 |
+
showlegend=False,
|
922 |
+
marker_color=color,
|
923 |
+
))
|
924 |
+
|
925 |
+
for _d in weekly_spends_data:
|
926 |
+
weekly_contribution_fig.add_trace(_d, row=1, col=1)
|
927 |
+
for _d in weekly_sales_data:
|
928 |
+
weekly_contribution_fig.add_trace(_d, row=1, col=2)
|
929 |
+
|
930 |
+
weekly_contribution_fig.add_trace(go.Bar(
|
931 |
+
x=x,
|
932 |
+
y=scenario.constant + scenario.correction,
|
933 |
+
name='Non Media',
|
934 |
+
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
|
935 |
+
marker_color=color_palette[-1],
|
936 |
+
), row=1, col=2)
|
937 |
+
|
938 |
+
weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribution by week', xaxis_title='Date')
|
939 |
+
weekly_contribution_fig.update_xaxes(showgrid=False)
|
940 |
+
weekly_contribution_fig.update_yaxes(showgrid=False)
|
941 |
+
return weekly_contribution_fig
|
942 |
+
|
943 |
+
def create_channel_spends_sales_plot(channel):
|
944 |
+
if channel is not None:
|
945 |
+
x = channel.dates
|
946 |
+
_spends = channel.actual_spends * channel.conversion_rate
|
947 |
+
_sales = channel.actual_sales
|
948 |
+
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
|
949 |
+
channel_sales_spends_fig.add_trace(go.Bar(
|
950 |
+
x=x,
|
951 |
+
y=_sales,
|
952 |
+
marker_color=color_palette[1], # You can choose a color from the palette
|
953 |
+
name='Revenue',
|
954 |
+
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
|
955 |
+
), secondary_y=False)
|
956 |
+
|
957 |
+
channel_sales_spends_fig.add_trace(go.Scatter(
|
958 |
+
x=x,
|
959 |
+
y=_spends,
|
960 |
+
line=dict(color=color_palette[3]), # You can choose another color from the palette
|
961 |
+
name='Spends',
|
962 |
+
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
|
963 |
+
), secondary_y=True)
|
964 |
+
|
965 |
+
channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Revenue', yaxis2_title='Spends ($)', title='Channel spends and Revenue week-wise')
|
966 |
+
channel_sales_spends_fig.update_xaxes(showgrid=False)
|
967 |
+
channel_sales_spends_fig.update_yaxes(showgrid=False)
|
968 |
+
else:
|
969 |
+
raw_df = st.session_state['raw_df']
|
970 |
+
df = raw_df.sort_values(by='Date')
|
971 |
+
x = df.Date
|
972 |
+
scenario = class_from_dict(st.session_state['default_scenario_dict'])
|
973 |
+
_sales = scenario.constant + scenario.correction
|
974 |
+
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
|
975 |
+
channel_sales_spends_fig.add_trace(go.Bar(
|
976 |
+
x=x,
|
977 |
+
y=_sales,
|
978 |
+
marker_color=color_palette[0], # You can choose a color from the palette
|
979 |
+
name='Revenue',
|
980 |
+
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
|
981 |
+
), secondary_y=False)
|
982 |
+
|
983 |
+
channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Revenue', yaxis2_title='Spends ($)', title='Channel spends and Revenue week-wise')
|
984 |
+
channel_sales_spends_fig.update_xaxes(showgrid=False)
|
985 |
+
channel_sales_spends_fig.update_yaxes(showgrid=False)
|
986 |
+
|
987 |
+
return channel_sales_spends_fig
|
988 |
+
|
989 |
+
def format_numbers(value, n_decimals=1,include_indicator = True):
|
990 |
+
if include_indicator:
|
991 |
+
return f'{CURRENCY_INDICATOR} {numerize(value,n_decimals)}'
|
992 |
+
else:
|
993 |
+
return f'{numerize(value,n_decimals)}'
|
994 |
+
|
995 |
+
|
996 |
+
def decimal_formater(num_string,n_decimals=1):
|
997 |
+
parts = num_string.split('.')
|
998 |
+
if len(parts) == 1:
|
999 |
+
return num_string+'.' + '0'*n_decimals
|
1000 |
+
else:
|
1001 |
+
to_be_padded = n_decimals - len(parts[-1])
|
1002 |
+
if to_be_padded > 0 :
|
1003 |
+
return num_string+'0'*to_be_padded
|
1004 |
+
else:
|
1005 |
+
return num_string
|
1006 |
+
|
1007 |
+
|
1008 |
+
def channel_name_formating(channel_name):
|
1009 |
+
name_mod = channel_name.replace('_', ' ')
|
1010 |
+
if name_mod.lower().endswith(' imp'):
|
1011 |
+
name_mod = name_mod.replace('Imp','Spend')
|
1012 |
+
elif name_mod.lower().endswith(' clicks'):
|
1013 |
+
name_mod = name_mod.replace('Clicks','Spend')
|
1014 |
+
return name_mod
|
1015 |
+
|
1016 |
+
|
1017 |
+
def send_email(email,message):
|
1018 |
+
s = smtplib.SMTP('smtp.gmail.com', 587)
|
1019 |
+
s.starttls()
|
1020 |
+
s.login("geethu4444@gmail.com", "jgydhpfusuremcol")
|
1021 |
+
s.sendmail("geethu4444@gmail.com", email, message)
|
1022 |
+
s.quit()
|
1023 |
+
|
1024 |
+
if __name__ == "__main__":
|
1025 |
+
initialize_data()
|