Pragya Jatav commited on
Commit
8dc7735
·
1 Parent(s): 90a93af
pages/9_Saved_Scenarios.py CHANGED
@@ -32,27 +32,31 @@ def create_scenario_summary(scenario_dict):
32
  channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate'),
33
  channel_dict.get('actual_total_sales') ,
34
  channel_dict.get('modified_total_sales'),
35
- channel_dict.get('actual_total_sales') / (channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate')),
36
- channel_dict.get('modified_total_sales') / (channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate')),
37
- channel_dict.get('actual_mroi'),
38
- channel_dict.get('modified_mroi'),
39
- channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('actual_total_sales'),
40
- channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('modified_total_sales')])
 
41
 
42
  summary_rows.append(['Total',
43
  scenario_dict.get('actual_total_spends'),
44
  scenario_dict.get('modified_total_spends'),
45
  scenario_dict.get('actual_total_sales'),
46
  scenario_dict.get('modified_total_sales'),
47
- scenario_dict.get('actual_total_sales') / scenario_dict.get('actual_total_spends'),
48
- scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'),
49
- '-',
50
- '-',
51
- scenario_dict.get('actual_total_spends') / scenario_dict.get('actual_total_sales'),
52
- scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')])
 
53
 
54
  columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["first", "second"])
55
- columns_index = columns_index.append(pd.MultiIndex.from_product([['Spends','NRPU','ROI','MROI','Spend per NRPU'],['Actual','Simulated']], names=["first", "second"]))
 
 
56
  return pd.DataFrame(summary_rows, columns=columns_index)
57
 
58
 
 
32
  channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate'),
33
  channel_dict.get('actual_total_sales') ,
34
  channel_dict.get('modified_total_sales'),
35
+ # channel_dict.get('actual_total_sales') / (channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate')),
36
+ # channel_dict.get('modified_total_sales') / (channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate')),
37
+ # channel_dict.get('actual_mroi'),
38
+ # channel_dict.get('modified_mroi'),
39
+ # channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('actual_total_sales'),
40
+ # channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('modified_total_sales')
41
+ ])
42
 
43
  summary_rows.append(['Total',
44
  scenario_dict.get('actual_total_spends'),
45
  scenario_dict.get('modified_total_spends'),
46
  scenario_dict.get('actual_total_sales'),
47
  scenario_dict.get('modified_total_sales'),
48
+ # scenario_dict.get('actual_total_sales') / scenario_dict.get('actual_total_spends'),
49
+ # scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'),
50
+ # '-',
51
+ # '-',
52
+ # scenario_dict.get('actual_total_spends') / scenario_dict.get('actual_total_sales'),
53
+ # scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')
54
+ ])
55
 
56
  columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["first", "second"])
57
+ columns_index = columns_index.append(pd.MultiIndex.from_product([['Spends','Prospects'
58
+ #,'ROI','MROI','Spend per NRPU'
59
+ ],['Actual','Simulated']], names=["first", "second"]))
60
  return pd.DataFrame(summary_rows, columns=columns_index)
61
 
62
 
response_curves_model_quality.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ from scipy.optimize import curve_fit
5
+ from sklearn.preprocessing import MinMaxScaler
6
+ import warnings
7
+ warnings.filterwarnings("ignore")
8
+ import plotly.graph_objects as go
9
+
10
+ ## reading input data
11
+ df= pd.read_csv('response_curves_input_file.csv')
12
+ df.dropna(inplace=True)
13
+ df['Date'] = pd.to_datetime(df['Date'])
14
+ df.reset_index(inplace=True)
15
+
16
+ channel_cols = [
17
+ 'BroadcastTV',
18
+ 'CableTV',
19
+ 'Connected&OTTTV',
20
+ 'DisplayProspecting',
21
+ 'DisplayRetargeting',
22
+ 'Video',
23
+ 'SocialProspecting',
24
+ 'SocialRetargeting',
25
+ 'SearchBrand',
26
+ 'SearchNon-brand',
27
+ 'DigitalPartners',
28
+ 'Audio',
29
+ 'Email']
30
+ spend_cols = [
31
+ 'tv_broadcast_spend',
32
+ 'tv_cable_spend',
33
+ 'stream_video_spend',
34
+ 'disp_prospect_spend',
35
+ 'disp_retarget_spend',
36
+ 'olv_spend',
37
+ 'social_prospect_spend',
38
+ 'social_retarget_spend',
39
+ 'search_brand_spend',
40
+ 'search_nonbrand_spend',
41
+ 'cm_spend',
42
+ 'audio_spend',
43
+ 'email_spend']
44
+ prospect_cols = [
45
+ 'Broadcast TV_Prospects',
46
+ 'Cable TV_Prospects',
47
+ 'Connected & OTT TV_Prospects',
48
+ 'Display Prospecting_Prospects',
49
+ 'Display Retargeting_Prospects',
50
+ 'Video_Prospects',
51
+ 'Social Prospecting_Prospects',
52
+ 'Social Retargeting_Prospects',
53
+ 'Search Brand_Prospects',
54
+ 'Search Non-brand_Prospects',
55
+ 'Digital Partners_Prospects',
56
+ 'Audio_Prospects',
57
+ 'Email_Prospects']
58
+
59
+ def hill_equation(x, Kd, n):
60
+ return x**n / (Kd**n + x**n)
61
+
62
+
63
+ def hill_func(x_data,y_data,x_minmax,y_minmax):
64
+ # Fit the Hill equation to the data
65
+ initial_guess = [1, 1] # Initial guess for Kd and n
66
+ params, covariance = curve_fit(hill_equation, x_data, y_data, p0=initial_guess,maxfev = 1000)
67
+
68
+ # Extract the fitted parameters
69
+ Kd_fit, n_fit = params
70
+
71
+
72
+ # Generate y values using the fitted parameters
73
+ y_fit = hill_equation(x_data, Kd_fit, n_fit)
74
+
75
+ x_data_inv = x_minmax.inverse_transform(np.array(x_data).reshape(-1,1))
76
+ y_data_inv = y_minmax.inverse_transform(np.array(y_data).reshape(-1,1))
77
+ y_fit_inv = y_minmax.inverse_transform(np.array(y_fit).reshape(-1,1))
78
+
79
+ # # Plot the original data and the fitted curve
80
+ # plt.scatter(x_data_inv, y_data_inv, label='Actual Data')
81
+ # plt.scatter(x_data_inv, y_fit_inv, label='Fit Data',color='red')
82
+ # # plt.line(x_data_inv, y_fit_inv, label=f'Fitted Hill Equation (Kd={Kd_fit:.2f}, n={n_fit:.2f})', color='red')
83
+ # plt.xlabel('Ligand Concentration')
84
+ # plt.ylabel('Fraction of Binding')
85
+ # plt.title('Fitting Hill Equation to Data')
86
+ # plt.legend()
87
+ # plt.show()
88
+
89
+ return y_fit,y_fit_inv,Kd_fit, n_fit
90
+
91
+ def data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext):
92
+ fit_col = 'Fit_Data_'+channel
93
+ plot_df = pd.DataFrame()
94
+
95
+ plot_df[f'{channel}_Spends'] = X
96
+
97
+ plot_df['Date'] = df['Date']
98
+ plot_df['MAT'] = df['MAT']
99
+
100
+
101
+
102
+ y_fit_inv_v2 = []
103
+ for i in range(len(y_fit_inv)):
104
+ y_fit_inv_v2.append(y_fit_inv[i][0])
105
+
106
+ plot_df[fit_col] = y_fit_inv_v2
107
+
108
+ # adding extra data
109
+
110
+ y_fit_inv_v2_ext = []
111
+ for i in range(len(y_fit_inv_ext)):
112
+ y_fit_inv_v2_ext.append(y_fit_inv_ext[i][0])
113
+
114
+ # print(x_ext_data)
115
+ ext_df = pd.DataFrame()
116
+ ext_df[f'{channel}_Spends'] = x_ext_data
117
+ ext_df[fit_col] = y_fit_inv_v2_ext
118
+
119
+ ext_df['Date'] = [
120
+ np.datetime64('1950-01-01'),
121
+ np.datetime64('1950-06-15'),
122
+ np.datetime64('1950-12-31')
123
+ ]
124
+
125
+ ext_df['MAT'] = ["ext","ext","ext"]
126
+
127
+ print(ext_df)
128
+ plot_df= plot_df.append(ext_df)
129
+ return plot_df
130
+
131
+ def input_data(df,spend_col,prospect_col):
132
+ X = np.array(df[spend_col].tolist())
133
+ y = np.array(df[prospect_col].tolist())
134
+
135
+ x_minmax = MinMaxScaler()
136
+ x_scaled = x_minmax.fit_transform(df[[spend_col]])
137
+ x_data = []
138
+ for i in range(len(x_scaled)):
139
+ x_data.append(x_scaled[i][0])
140
+
141
+ y_minmax = MinMaxScaler()
142
+ y_scaled = y_minmax.fit_transform(df[[prospect_col]])
143
+ y_data = []
144
+ for i in range(len(y_scaled)):
145
+ y_data.append(y_scaled[i][0])
146
+
147
+ return X,y,x_data,y_data,x_minmax,y_minmax
148
+
149
+ def extend_s_curve(x_max,x_minmax,y_minmax, Kd_fit, n_fit):
150
+ print(x_max)
151
+ x_ext_data = [x_max*1.2,x_max*1.3,x_max*1.5]
152
+ # x_ext_data = [1500000,2000000,2500000]
153
+ # x_ext_data = [x_max+100,x_max+200,x_max+5000]
154
+ x_scaled = x_minmax.transform(pd.DataFrame(x_ext_data))
155
+ x_data = []
156
+ for i in range(len(x_scaled)):
157
+ x_data.append(x_scaled[i][0])
158
+
159
+ print(x_data)
160
+ y_fit = hill_equation(x_data, Kd_fit, n_fit)
161
+ y_fit_inv = y_minmax.inverse_transform(np.array(y_fit).reshape(-1,1))
162
+
163
+ return x_ext_data,y_fit_inv
164
+
165
+ def fit_data(spend_col,prospect_col,channel):
166
+ ### getting k and n parameters
167
+ temp_df = df[df[spend_col]>0]
168
+ temp_df.reset_index(inplace=True)
169
+
170
+ X,y,x_data,y_data,x_minmax,y_minmax = input_data(temp_df,spend_col,prospect_col)
171
+ y_fit, y_fit_inv, Kd_fit, n_fit = hill_func(x_data,y_data,x_minmax,y_minmax)
172
+ print('k: ',Kd_fit)
173
+ print('n: ', n_fit)
174
+
175
+ ##### extend_s_curve
176
+ x_ext_data,y_fit_inv_ext= extend_s_curve(temp_df[spend_col].max(),x_minmax,y_minmax, Kd_fit, n_fit)
177
+
178
+ plot_df = data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext)
179
+ return plot_df
180
+
181
+ plotly_data = fit_data(spend_cols[0],prospect_cols[0],channel_cols[0])
182
+ plotly_data.tail()
183
+
184
+ for i in range(1,13):
185
+ print(i)
186
+ pdf = fit_data(spend_cols[i],prospect_cols[i],channel_cols[i])
187
+ plotly_data = plotly_data.merge(pdf,on = ["Date","MAT"],how = "left")
188
+
189
+ def response_curves(channel,x_modified,y_modified):
190
+
191
+ # Initialize the Plotly figure
192
+ fig = go.Figure()
193
+
194
+ x_col = (channel+"_Spends").replace('\xa0', '')
195
+ y_col = ("Fit_Data_"+channel).replace('\xa0', '')
196
+
197
+ # fig.add_trace(go.Scatter(
198
+ # x=plotly_data[x_col],
199
+ # y=plotly_data[y_col],
200
+ # mode='markers',
201
+ # name=x_col.replace('_Spends', '')
202
+ # ))
203
+
204
+ fig.add_trace(go.Scatter(
205
+ x=plotly_data.sort_values(by=x_col, ascending=True)[x_col],
206
+ y=plotly_data.sort_values(by=x_col, ascending=True)[y_col],
207
+ mode='lines+markers',
208
+ name=x_col.replace('_Spends', '')
209
+ ))
210
+
211
+ plotly_data2 = plotly_data.copy()
212
+ # .dropna(subset=[x_col]).reset_index(inplace = True)
213
+ fig.add_trace(go.Scatter(
214
+ x=plotly_data[plotly_data2['Date'] == plotly_data2['Date'].max()][x_col],
215
+ y=plotly_data[plotly_data2['Date'] == plotly_data2['Date'].max()][y_col],
216
+ mode='markers',
217
+ marker=dict(
218
+ size=13 # Adjust the size value to make the markers larger or smaller
219
+ , color = 'green'
220
+ ),
221
+ name="Current Spends"
222
+ ))
223
+
224
+ fig.add_trace(go.Scatter(
225
+ x=[x_modified],
226
+ y=[y_modified],
227
+ mode='markers',
228
+ marker=dict(
229
+ size=13 # Adjust the size value to make the markers larger or smaller
230
+ , color = 'blue'
231
+ ),
232
+ name="Optimised Spends"
233
+ ))
234
+
235
+ # Update layout with titles
236
+ fig.update_layout(
237
+ title=channel+' Response Curve',
238
+ xaxis_title='Weekly Spends',
239
+ yaxis_title='Prospects'
240
+ )
241
+
242
+ # Show the figure
243
+ return fig
244
+