# Importing necessary libraries
import streamlit as st
st.set_page_config(
page_title="Scenario Planner",
page_icon="⚖️",
layout="wide",
initial_sidebar_state="collapsed",
)
# Disable +/- for number input
st.markdown(
"""
""",
unsafe_allow_html=True,
)
import re
import sys
import copy
import pickle
import traceback
import numpy as np
import pandas as pd
from scenario import numerize
import plotly.graph_objects as go
from post_gres_cred import db_cred
from scipy.optimize import minimize
from log_application import log_message
from utilities import project_selection, update_db, set_header, load_local_css
from utilities import (
get_panels_names,
get_metrics_names,
name_formating,
load_rcs_metadata_files,
load_scenario_metadata_files,
generate_rcs_data,
generate_scenario_data,
)
from constants import (
xtol_tolerance_per,
mroi_threshold,
word_length_limit_lower,
word_length_limit_upper,
)
schema = db_cred["schema"]
load_local_css("styles.css")
set_header()
# Initialize project name session state
if "project_name" not in st.session_state:
st.session_state["project_name"] = None
# Fetch project dictionary
if "project_dct" not in st.session_state:
project_selection()
st.stop()
# Display Username and Project Name
if "username" in st.session_state and st.session_state["username"] is not None:
cols1 = st.columns([2, 1])
with cols1[0]:
st.markdown(f"**Welcome {st.session_state['username']}**")
with cols1[1]:
st.markdown(f"**Current Project: {st.session_state['project_name']}**")
# Initialize ROI threshold
if "roi_threshold" not in st.session_state:
st.session_state.roi_threshold = 1
# Initialize message display holder
if "message_display" not in st.session_state:
st.session_state.message_display = {"type": "success", "message": None, "icon": ""}
# Function to reset modified_scenario_data
def reset_scenario(metrics_selected=None, panel_selected=None):
# Clear message_display
st.session_state.message_display = {"type": "success", "message": None, "icon": ""}
# Use default values from session state if not provided
if metrics_selected is None:
metrics_selected = st.session_state["response_metrics_selectbox_sp"]
if panel_selected is None:
panel_selected = st.session_state["panel_selected_selectbox_sp"]
# Load original scenario data
original_data = st.session_state["project_dct"]["scenario_planner"][
"original_metadata_file"
]
original_scenario_data = original_data[metrics_selected][panel_selected]
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Update the specific section with the original scenario data
data[metrics_selected][panel_selected] = copy.deepcopy(original_scenario_data)
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Function to build s curve
def s_curve(x, power, K, b, a, x0):
return K / (1 + b * np.exp(-a * ((x / 10**power) - x0)))
# Function to retrieve S-curve parameters for a given metric, panel, and channel
def get_s_curve_params(
metrics_selected,
panel_selected,
channel_selected,
original_rcs_data,
modified_rcs_data,
):
# Retrieve 'power' parameter from the original data for the specific metric, panel, and channel
power = original_rcs_data[metrics_selected][panel_selected][channel_selected][
"power"
]
# Get the S-curve parameters from the modified data for the same metric, panel, and channel
s_curve_param = modified_rcs_data[metrics_selected][panel_selected][
channel_selected
]
# Load modified scenario metadata
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Update modified S-curve parameters
data[metrics_selected][panel_selected]["channels"][channel_selected][
"response_curve_params"
] = s_curve_param
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Update the 'power' parameter in the modified S-curve parameters with the original 'power' value
s_curve_param["power"] = power
# Return the updated S-curve parameters
return s_curve_param
# Function to calculate total contribution
def get_total_contribution(
spends, channels, s_curve_params, channels_proportion, modified_scenario_data
):
total_contribution = 0
for i in range(len(channels)):
channel_name = channels[i]
channel_s_curve_params = s_curve_params[channel_name]
spend_proportion = spends[i] * channels_proportion[channel_name]
total_contribution += sum(
s_curve(
spend_proportion,
channel_s_curve_params["power"],
channel_s_curve_params["K"],
channel_s_curve_params["b"],
channel_s_curve_params["a"],
channel_s_curve_params["x0"],
)
) + sum(
modified_scenario_data["channels"][channel_name]["correction"]
) # correction for s-curve
return total_contribution + sum(modified_scenario_data["constant"])
# Function to calculate total spends
def get_total_spends(spends, channels_conversion_ratio):
return np.sum(spends * np.array(list(channels_conversion_ratio.values())))
# Function to optimizes spends for all channels given bounds and a total spend target
def optimizer(
optimization_goal,
s_curve_params,
channels_spends,
channels_proportion,
channels_conversion_ratio,
total_target,
bounds_dict,
modified_scenario_data,
):
# Extract channel names and corresponding actual spends
channels = list(channels_spends.keys())
actual_spends = np.array(list(channels_spends.values()))
num_channels = len(actual_spends)
# Define the objective function based on the optimization goal
def objective_fun(spends):
if optimization_goal == "Spend":
# Minimize negative total contribution to maximize the total contribution
return -get_total_contribution(
spends,
channels,
s_curve_params,
channels_proportion,
modified_scenario_data,
)
else:
# Minimize total spends
return get_total_spends(spends, channels_conversion_ratio)
def constraint_fun(spends):
if optimization_goal == "Spend":
# Ensure the total spends equals the total spend target
return get_total_spends(spends, channels_conversion_ratio)
else:
# Ensure the total contribution equals the total contribution target
return get_total_contribution(
spends,
channels,
s_curve_params,
channels_proportion,
modified_scenario_data,
)
# Equality constraint
constraints = {
"type": "eq",
"fun": lambda spends: constraint_fun(spends) - total_target,
} # Sum of all channel spends/metrics should equal the total spend/metrics target
# Bounds for each channel's spend based
bounds = [
(
actual_spends[i] * (1 + bounds_dict[channels[i]][0] / 100),
actual_spends[i] * (1 + bounds_dict[channels[i]][1] / 100),
)
for i in range(num_channels)
]
# Initial guess for the optimization
initial_guess = np.array(actual_spends)
# Calculate xtol as n% of the minimum of spends
xtol = max(10, (xtol_tolerance_per / 100) * np.min(actual_spends))
# Perform the optimization using 'trust-constr' method
result = minimize(
objective_fun,
initial_guess,
method="trust-constr",
constraints=constraints,
bounds=bounds,
options={
"disp": True, # Display the optimization process
"xtol": xtol, # Dynamic step size tolerance
"maxiter": 1e5, # Maximum number of iterations
},
)
# Extract the optimized spends from the result
optimized_spends_array = result.x
# Convert optimized spends back to a dictionary with channel names
optimized_spends = {
channels[i]: max(0, optimized_spends_array[i]) for i in range(num_channels)
}
return optimized_spends, result.success
# Function to calculate achievable targets at lower and upper spend bounds
@st.cache_data(show_spinner=False)
def max_target_achievable(
channels_spends,
s_curve_params,
channels_proportion,
modified_scenario_data,
bounds_dict,
):
# Extract channel names and corresponding actual spends
channels = list(channels_spends.keys())
actual_spends = np.array(list(channels_spends.values()))
num_channels = len(actual_spends)
# Bounds for each channel's spend
lower_spends, upper_spends = [], []
for i in range(num_channels):
lower_spends.append(actual_spends[i] * (1 + bounds_dict[channels[i]][0] / 100))
upper_spends.append(actual_spends[i] * (1 + bounds_dict[channels[i]][1] / 100))
# Calculate achievable targets at lower and upper spend bounds
lower_achievable_target = get_total_contribution(
lower_spends,
channels,
s_curve_params,
channels_proportion,
modified_scenario_data,
)
upper_achievable_target = get_total_contribution(
upper_spends,
channels,
s_curve_params,
channels_proportion,
modified_scenario_data,
)
# Return achievable targets with ±0.1% safety margin
return max(0, 1.001 * lower_achievable_target), 0.999 * upper_achievable_target
# Function to check if number is in valid format
def is_valid_number_format(number_str):
# Check for None
if number_str is None:
# Store the message details in session state for invalid input
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
# Define the valid suffixes
valid_suffixes = {"K", "M", "B", "T"}
# Check for negative numbers
if number_str[0] == "-":
# Store the message details in session state for invalid input
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
# Check if the string ends with a digit
if number_str[-1].isdigit():
try:
# Attempt to convert the entire string to float
number = float(number_str)
# Ensure the number is non-negative
if number >= 0:
return True
else:
# Store the message details in session state for invalid input
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
except ValueError:
# Store the message details in session state for invalid input
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
# Check if the string ends with a valid suffix
suffix = number_str[-1].upper()
if suffix in valid_suffixes:
num_part = number_str[:-1] # Extract the numerical part
try:
# Attempt to convert the numerical part to float
number = float(num_part)
# Ensure the number part is non-negative
if number >= 0:
return True
else:
# Store the message details in session state for invalid input
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
except ValueError:
# Store the message details in session state for invalid input
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
# If neither condition is met, return False
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
# Function to converts a string with number suffixes (K, M, B, T) to a float
def convert_to_float(number_str):
# Dictionary mapping suffixes to their multipliers
multipliers = {
"K": 1e3, # Thousand
"M": 1e6, # Million
"B": 1e9, # Billion
"T": 1e12, # Trillion
}
# If there's no suffix, directly convert to float
if number_str[-1].isdigit():
return float(number_str)
# Extract the suffix (last character) and the numerical part
suffix = number_str[-1].upper()
num_part = number_str[:-1]
# Convert the numerical part to float and multiply by the corresponding multiplier
return float(num_part) * multipliers[suffix]
# Function to update absolute_channel_spends change
def absolute_channel_spends_change(
channel_key, channel_spends_actual, channel, metrics_selected, panel_selected
):
# Do not update if the number is in an invalid format
if not is_valid_number_format(st.session_state[f"{channel_key}_abs_spends_key"]):
return
# Get updated absolute spends from session state
new_absolute_spends = (
convert_to_float(st.session_state[f"{channel_key}_abs_spends_key"])
* st.session_state["multiplier"]
)
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Total channel spends
total_channel_spends = 0
for current_channel in list(
data[metrics_selected][panel_selected]["channels"].keys()
):
# Channel key
channel_key = f"{metrics_selected}_{panel_selected}_{current_channel}"
total_channel_spends += (
convert_to_float(st.session_state[f"{channel_key}_abs_spends_key"])
* st.session_state["multiplier"]
)
# Check if total channel spends are within the allowed range (±50% of the original total spends)
if (
total_channel_spends
< 1.5 * data[metrics_selected][panel_selected]["actual_total_spends"]
and total_channel_spends
> 0.5 * data[metrics_selected][panel_selected]["actual_total_spends"]
):
# Update the modified_total_spends for the specified channel
data[metrics_selected][panel_selected]["channels"][channel][
"modified_total_spends"
] = new_absolute_spends / float(
data[metrics_selected][panel_selected]["channels"][channel][
"conversion_rate"
]
)
# Update total spends
data[metrics_selected][panel_selected][
"modified_total_spends"
] = total_channel_spends
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
] = data
else:
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Keep total spending within ±50% of the original value.",
"icon": "⚠️",
}
# Function to update percentage_channel_spends change
def percentage_channel_spends_change(
channel_key, channel_spends_actual, channel, metrics_selected, panel_selected
):
# Retrieve the percentage spend change from session state
percentage_channel_spends = round(
st.session_state[f"{channel_key}_per_spends_key"], 0
)
# Calculate the new absolute spends
new_absolute_spends = channel_spends_actual * (1 + percentage_channel_spends / 100)
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Total channel spends
total_channel_spends = 0
for current_channel in list(
data[metrics_selected][panel_selected]["channels"].keys()
):
# Channel key
channel_key = f"{metrics_selected}_{panel_selected}_{current_channel}"
# Current channel spends actual
current_channel_spends_actual = data[metrics_selected][panel_selected][
"channels"
][current_channel]["actual_total_spends"]
# Current channel conversion rate
current_channel_conversion_rate = data[metrics_selected][panel_selected][
"channels"
][current_channel]["conversion_rate"]
# Calculate the current channel absolute spends
current_channel_absolute_spends = (
current_channel_spends_actual
* current_channel_conversion_rate
* (1 + st.session_state[f"{channel_key}_per_spends_key"] / 100)
)
total_channel_spends += current_channel_absolute_spends
# Check if total channel spends are within the allowed range (±50% of the original total spends)
if (
total_channel_spends
< 1.5 * data[metrics_selected][panel_selected]["actual_total_spends"]
and total_channel_spends
> 0.5 * data[metrics_selected][panel_selected]["actual_total_spends"]
):
# Update the modified_total_spends for the specified channel
data[metrics_selected][panel_selected]["channels"][channel][
"modified_total_spends"
] = float(new_absolute_spends) / float(
data[metrics_selected][panel_selected]["channels"][channel][
"conversion_rate"
]
)
# Update total spends
data[metrics_selected][panel_selected][
"modified_total_spends"
] = total_channel_spends
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
] = data
else:
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Keep total spending within ±50% of the original value.",
"icon": "⚠️",
}
# # Function to update total input change
# def total_input_change(per_change):
# # Load modified scenario data
# data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# # Get the list of all channels in the specified panel and metric
# channel_list = list(data[metrics_selected][panel_selected]["channels"].keys())
# # Iterate over each channel to update their modified spends
# for channel in channel_list:
# # Retrieve the actual spends for the channel
# channel_actual_spends = data[metrics_selected][panel_selected]["channels"][
# channel
# ]["actual_total_spends"]
# # Calculate the modified spends for the channel based on the percent change
# modified_channel_metrics = channel_actual_spends * ((100 + per_change) / 100)
# # Update the channel's modified total spends in the data
# data[metrics_selected][panel_selected]["channels"][channel][
# "modified_total_spends"
# ] = modified_channel_metrics
# # Update modified scenario metadata
# st.session_state["project_dct"]["scenario_planner"][
# "modified_metadata_file"
# ] = data
# Function to update total input change
def total_input_change(per_change, metrics_selected, panel_selected):
# Load modified and original scenario data
modified_data = st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
].copy()
original_data = st.session_state["project_dct"]["scenario_planner"][
"original_metadata_file"
].copy()
# Get the list of all channels in the selected panel and metric
channel_list = list(
modified_data[metrics_selected][panel_selected]["channels"].keys()
)
# Separate channels into unfrozen and frozen based on optimization status
unfrozen_channels, frozen_channels = [], []
for channel in channel_list:
channel_key = f"{metrics_selected}_{panel_selected}_{channel}"
if st.session_state.get(f"{channel_key}_allow_optimize_key", False):
frozen_channels.append(channel)
else:
unfrozen_channels.append(channel)
# Calculate spends and total share from frozen channels, weighted by conversion rate
frozen_channel_share, frozen_channel_spends = 0, 0
for channel in frozen_channels:
conversion_rate = original_data[metrics_selected][panel_selected]["channels"][
channel
]["conversion_rate"]
actual_spends = original_data[metrics_selected][panel_selected]["channels"][
channel
]["actual_total_spends"]
modified_spends = modified_data[metrics_selected][panel_selected]["channels"][
channel
]["modified_total_spends"]
spends_diff = max(actual_spends, 1e-3) * ((100 + per_change) / 100) - max(
modified_spends, 1e-3
)
frozen_channel_share += spends_diff * conversion_rate
frozen_channel_spends += max(actual_spends, 1e-3) * conversion_rate
# Redistribute frozen share across unfrozen channels based on original spend weights
for channel in unfrozen_channels:
conversion_rate = original_data[metrics_selected][panel_selected]["channels"][
channel
]["conversion_rate"]
actual_spends = original_data[metrics_selected][panel_selected]["channels"][
channel
]["actual_total_spends"]
# Calculate weight of the current channel's original spends
total_original_spends = original_data[metrics_selected][panel_selected][
"actual_total_spends"
]
channel_weight = (actual_spends * conversion_rate) / (
total_original_spends - frozen_channel_spends
)
# Calculate the modified spends with redistributed frozen share
modified_spends = (
max(actual_spends, 1e-3) * ((100 + per_change) / 100)
+ (frozen_channel_share * channel_weight) / conversion_rate
)
# Update modified total spends in the modified data
modified_data[metrics_selected][panel_selected]["channels"][channel][
"modified_total_spends"
] = modified_spends
# Save the updated modified scenario data back to the session state
st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
] = modified_data
# Function to update total_absolute_main_key change
def total_absolute_main_key_change(metrics_selected, panel_selected, optimization_goal):
# Do not update if the number is in an invalid format
if not is_valid_number_format(st.session_state["total_absolute_main_key"]):
return
# Get updated absolute from session state
new_absolute = (
convert_to_float(st.session_state["total_absolute_main_key"])
* st.session_state["multiplier"]
)
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
if optimization_goal == "Spend":
# Retrieve the old absolute spends
old_absolute = data[metrics_selected][panel_selected]["actual_total_spends"]
else:
# Retrieve the old absolute metrics
old_absolute = data[metrics_selected][panel_selected]["actual_total_sales"]
# Calculate the allowable range for new spends
lower_bound = old_absolute * 0.5
upper_bound = old_absolute * 1.5
# Ensure the new spends are within ±50% of the old value
if new_absolute < lower_bound or new_absolute > upper_bound:
new_absolute = old_absolute
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Keep total spending within ±50% of the original value.",
"icon": "⚠️",
}
if optimization_goal == "Spend":
# Update the modified_total_spends with the constrained value
data[metrics_selected][panel_selected]["modified_total_spends"] = new_absolute
else:
# Update the modified_total_sales with the constrained value
data[metrics_selected][panel_selected]["modified_total_sales"] = new_absolute
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Update total input change
if optimization_goal == "Spend":
per_change = ((new_absolute - old_absolute) / old_absolute) * 100
total_input_change(per_change, metrics_selected, panel_selected)
# Function to update total_absolute_key change
def total_absolute_key_change(metrics_selected, panel_selected, optimization_goal):
# Get updated absolute from session state
new_absolute = (
convert_to_float(st.session_state["total_absolute_key"])
* st.session_state["multiplier"]
)
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
if optimization_goal == "Spend":
# Update the modified_total_spends for the specified channel
data[metrics_selected][panel_selected]["modified_total_spends"] = new_absolute
old_absolute = data[metrics_selected][panel_selected]["actual_total_spends"]
else:
# Update the modified_total_sales for the specified channel
data[metrics_selected][panel_selected]["modified_total_sales"] = new_absolute
old_absolute = data[metrics_selected][panel_selected]["actual_total_sales"]
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Update total input change
if optimization_goal == "Spend":
per_change = ((new_absolute - old_absolute) / old_absolute) * 100
total_input_change(per_change, metrics_selected, panel_selected)
# Function to update total_absolute_key change
def total_percentage_key_change(
metrics_selected,
panel_selected,
absolute_value,
optimization_goal,
):
# Get updated absolute from session state
new_absolute = absolute_value * (1 + st.session_state["total_percentage_key"] / 100)
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
if optimization_goal == "Spend":
# Update the modified_total_spends for the specified channel
data[metrics_selected][panel_selected]["modified_total_spends"] = new_absolute
old_absolute = data[metrics_selected][panel_selected]["actual_total_spends"]
else:
# Update the modified_total_sales for the specified channel
data[metrics_selected][panel_selected]["modified_total_sales"] = new_absolute
old_absolute = data[metrics_selected][panel_selected]["actual_total_sales"]
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Update total input change
if optimization_goal == "Spend":
per_change = ((new_absolute - old_absolute) / old_absolute) * 100
total_input_change(per_change, metrics_selected, panel_selected)
# Function to update bound change
def bound_change(metrics_selected, panel_selected, channel_key, channel):
# Get updated bounds from session state
new_lower_bound = st.session_state[f"{channel_key}_lower_key"]
new_upper_bound = st.session_state[f"{channel_key}_upper_key"]
if new_lower_bound > new_upper_bound:
new_bounds = [-10, 10]
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Lower bound cannot be greater than Upper bound.",
"icon": "⚠️",
}
else:
new_bounds = [new_lower_bound, new_upper_bound]
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Update the bounds for the specified channel
data[metrics_selected][panel_selected]["channels"][channel]["bounds"] = new_bounds
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Function to update freeze change
def freeze_change(metrics_selected, panel_selected, channel_key, channel, channel_list):
# Initialize counter for channels that are not frozen
unfrozen_channel_count = 0
# Check the optimization status of each channel
for current_channel in channel_list:
current_channel_key = f"{metrics_selected}_{panel_selected}_{current_channel}"
unfrozen_channel_count += (
1
if not st.session_state[f"{current_channel_key}_allow_optimize_key"]
else 0
)
# Ensure at least two channels are allowed for optimization
if unfrozen_channel_count < 2:
st.session_state.message_display = {
"type": "warning",
"message": "Please allow at least two channels to be optimized.",
"icon": "⚠️",
}
return
if st.session_state[f"{channel_key}_allow_optimize_key"]:
# Updated bounds from session state
new_lower_bound, new_upper_bound = 0, 0
new_bounds = [new_lower_bound, new_upper_bound]
new_freeze = True
else:
# Updated bounds from session state
new_lower_bound, new_upper_bound = -10, 10
new_bounds = [new_lower_bound, new_upper_bound]
new_freeze = False
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Update the bounds for the specified channel
data[metrics_selected][panel_selected]["channels"][channel]["bounds"] = new_bounds
data[metrics_selected][panel_selected]["channels"][channel]["freeze"] = new_freeze
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Function to calculate y, ROI and MROI for given point
def get_point_parms(
x_val,
current_s_curve_params,
current_channel_proportion,
current_conversion_rate,
channel_correction,
):
# Calculate y value for the given spend point
y_val = (
sum(
s_curve(
(x_val * current_channel_proportion),
current_s_curve_params["power"],
current_s_curve_params["K"],
current_s_curve_params["b"],
current_s_curve_params["a"],
current_s_curve_params["x0"],
)
)
+ channel_correction
)
# Calculate MROI using a small nudge for actual spends
nudge = 1e-3
x1 = float(x_val * current_conversion_rate)
y1 = float(y_val)
x2 = x1 + nudge
y2 = (
sum(
s_curve(
((x2 / current_conversion_rate) * current_channel_proportion),
current_s_curve_params["power"],
current_s_curve_params["K"],
current_s_curve_params["b"],
current_s_curve_params["a"],
current_s_curve_params["x0"],
)
)
+ channel_correction
)
mroi_val = (float(y2) - y1) / (x2 - x1) if x2 != x1 else 0
# Calculate ROI
roi_val = y_val / (x_val * current_conversion_rate)
return roi_val, mroi_val, y_val
# Function to find segment value
def find_segment_value(x, roi, mroi, roi_threshold=1, mroi_threshold=0.05):
# Initialize the start and end values of the x array
start_value = x[0]
end_value = x[-1]
# Define the condition for the "green region" where both ROI and MROI exceed their respective thresholds
green_condition = (roi > roi_threshold) & (mroi > mroi_threshold)
# Find indices where ROI exceeds the ROI threshold
left_indices = np.where(roi > roi_threshold)[0]
# Find indices where both ROI and MROI exceed their thresholds (green condition)
right_indices = np.where(green_condition)[0]
# Determine the left value based on the first index where ROI exceeds the threshold
left_value = x[left_indices[0]] if left_indices.size > 0 else x[0]
# Determine the right value based on the last index where both ROI and MROI exceed their thresholds
right_value = x[right_indices[-1]] if right_indices.size > 0 else x[0]
# Ensure the left value does not exceed the right value, adjust if necessary
if left_value > right_value:
left_value = right_value
return start_value, end_value, left_value, right_value
# Function to generate response curves plots
@st.cache_data(show_spinner=False)
def generate_response_curve_plots(
channel_list,
s_curve_params,
channels_proportion,
original_scenario_data,
multiplier,
):
figures, channel_roi_mroi, region_start_end = [], {}, {}
for channel in channel_list:
spends_actual = original_scenario_data["channels"][channel][
"actual_total_spends"
]
conversion_rate = original_scenario_data["channels"][channel]["conversion_rate"]
channel_correction = sum(
original_scenario_data["channels"][channel]["correction"]
)
x_actual = np.linspace(0, 5 * spends_actual, 100)
x_plot = x_actual * conversion_rate
# Calculate y values for the S-curve
y_plot = [
sum(
s_curve(
(x * channels_proportion[channel]),
s_curve_params[channel]["power"],
s_curve_params[channel]["K"],
s_curve_params[channel]["b"],
s_curve_params[channel]["a"],
s_curve_params[channel]["x0"],
)
)
+ channel_correction
for x in x_actual
]
# Calculate ROI and ensure they are scalar values
roi = [float(y) / float(x) if x != 0 else 0 for x, y in zip(x_plot, y_plot)]
# Calculate MROI using a small nudge
nudge = 1e-3
mroi = []
for i in range(len(x_plot)):
x1 = float(x_plot[i])
y1 = float(y_plot[i])
x2 = x1 + nudge
y2 = (
sum(
s_curve(
((x2 / conversion_rate) * channels_proportion[channel]),
s_curve_params[channel]["power"],
s_curve_params[channel]["K"],
s_curve_params[channel]["b"],
s_curve_params[channel]["a"],
s_curve_params[channel]["x0"],
)
)
+ channel_correction
)
mroi_value = (float(y2) - y1) / (x2 - x1) if x2 != x1 else 0
mroi.append(mroi_value)
# Channel correction
channel_correction = sum(
original_scenario_data["channels"][channel]["correction"]
)
# Calculate y, ROI and MROI for the actual spend point
roi_actual, mroi_actual, y_actual = get_point_parms(
spends_actual,
s_curve_params[channel],
channels_proportion[channel],
conversion_rate,
channel_correction,
)
# Create the plotly figure
fig = go.Figure()
# Add S-curve line
fig.add_trace(
go.Scatter(
x=np.array(x_plot) / multiplier,
y=np.array(y_plot) / multiplier,
mode="lines",
name="Metrics",
hoverinfo="text",
text=[
f"Spends: {numerize(x / multiplier)}
{metrics_selected_formatted}: {numerize(y / multiplier)}
ROI: {r:.2f}
MROI: {m:.2f}"
for x, y, r, m in zip(x_plot, y_plot, roi, mroi)
],
)
)
# Add current spend point
fig.add_trace(
go.Scatter(
x=[spends_actual * conversion_rate / multiplier],
y=[y_actual / multiplier],
mode="markers",
marker=dict(color="cyan", size=10, symbol="circle"),
name="Actual Spend",
hoverinfo="text",
text=[
f"Actual Spend: {numerize(spends_actual * conversion_rate / multiplier)}
{metrics_selected_formatted}: {numerize(y_actual / multiplier)}
ROI: {roi_actual:.2f}
MROI: {mroi_actual:.2f}"
],
showlegend=True,
)
)
# ROI Threshold
roi_threshold = st.session_state.roi_threshold
# Scale x and y values
x, y = np.array(x_plot), np.array(y_plot)
x_scaled, y_scaled = x / max(x), y / max(y)
# Calculate MROI scaled starting from the first point
mroi_scaled = np.zeros_like(x_scaled)
for j in range(1, len(x_scaled)):
x1, y1 = x_scaled[j - 1], y_scaled[j - 1]
x2, y2 = x_scaled[j], y_scaled[j]
mroi_scaled[j] = (y2 - y1) / (x2 - x1) if (x2 - x1) != 0 else 0
# Get the start_value, end_value, left_value, right_value for segments
start_value, end_value, left_value, right_value = find_segment_value(
x_plot, np.array(roi), mroi_scaled, roi_threshold, mroi_threshold
)
# Store region start and end points
region_start_end[channel] = {
"start_value": start_value,
"end_value": end_value,
"left_value": left_value,
"right_value": right_value,
}
# Adding background colors
y_max = max(y_plot) * 1.3 # 30% extra space above the max
# Yellow region
fig.add_shape(
type="rect",
x0=start_value / multiplier,
y0=0,
x1=left_value / multiplier,
y1=y_max / multiplier,
line=dict(width=0),
fillcolor="rgba(255, 255, 0, 0.3)",
layer="below",
)
# Green region
fig.add_shape(
type="rect",
x0=left_value / multiplier,
y0=0,
x1=right_value / multiplier,
y1=y_max / multiplier,
line=dict(width=0),
fillcolor="rgba(0, 255, 0, 0.3)",
layer="below",
)
# Red region
fig.add_shape(
type="rect",
x0=right_value / multiplier,
y0=0,
x1=end_value / multiplier,
y1=y_max / multiplier,
line=dict(width=0),
fillcolor="rgba(255, 0, 0, 0.3)",
layer="below",
)
# Layout adjustments
fig.update_layout(
title=f"{name_formating(channel)}",
showlegend=False,
xaxis=dict(
showgrid=True,
showticklabels=True,
tickformat=".2s",
gridcolor="lightgrey",
gridwidth=0.5,
griddash="dot",
),
yaxis=dict(
showgrid=True,
showticklabels=True,
tickformat=".2s",
gridcolor="lightgrey",
gridwidth=0.5,
griddash="dot",
),
template="plotly_white",
margin=dict(l=20, r=20, t=30, b=20),
height=100 * (len(channel_list) + 4 - 1) // 4,
)
figures.append(fig)
# Store data of each channel ROI and MROI
channel_roi_mroi[channel] = {
"actual_roi": roi_actual,
"actual_mroi": mroi_actual,
}
return figures, channel_roi_mroi, region_start_end
# Function to add modified spends/metrics point on plot
def modified_metrics_point(
fig,
modified_spends,
s_curve_params,
channels_proportion,
conversion_rate,
channel_correction,
):
# Calculate ROI, MROI, and y for the modified point
roi_modified, mroi_modified, y_modified = get_point_parms(
modified_spends,
s_curve_params,
channels_proportion,
conversion_rate,
channel_correction,
)
# Add modified spend point
fig.add_trace(
go.Scatter(
x=[modified_spends * conversion_rate / st.session_state["multiplier"]],
y=[y_modified / st.session_state["multiplier"]],
mode="markers",
marker=dict(color="blueviolet", size=10, symbol="circle"),
name="Optimized Spend",
hoverinfo="text",
text=[
f"Modified Spend: {numerize(modified_spends * conversion_rate / st.session_state.multiplier)}
{metrics_selected_formatted}: {numerize(y_modified / st.session_state.multiplier)}
ROI: {roi_modified:.2f}
MROI: {mroi_modified:.2f}"
],
showlegend=True,
)
)
return roi_modified, mroi_modified, fig
# Function to update bound type change
def bound_type_change():
# Get updated bound type from session state
new_bound_type = st.session_state["bound_type_key"]
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Update the bound type
data[metrics_selected][panel_selected]["bound_type"] = new_bound_type
# Set bounds to default value if bound type is False (Default)
channel_list = list(data[metrics_selected][panel_selected]["channels"].keys())
if not new_bound_type:
for channel in channel_list:
data[metrics_selected][panel_selected]["channels"][channel]["bounds"] = [
-10,
10,
]
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Function to format the numbers with decimal
def format_value(input_value):
value = abs(input_value)
return f"{input_value:.4f}" if value < 1 else f"{numerize(input_value, 1)}"
# Function to format the numbers with decimal
def round_value(input_value):
value = abs(input_value)
return round(input_value, 4) if value < 1 else round(input_value, 1)
# Function to generate ROI and MROI plots for all channels
@st.cache_data(show_spinner=False)
def roi_mori_plot(channel_roi_mroi):
# Dictionary to store plots
channel_roi_mroi_plot = {}
for channel in channel_roi_mroi:
channel_roi_mroi_data = channel_roi_mroi[channel]
# Extract the data
actual_roi = channel_roi_mroi_data["actual_roi"]
optimized_roi = channel_roi_mroi_data["optimized_roi"]
actual_mroi = channel_roi_mroi_data["actual_mroi"]
optimized_mroi = channel_roi_mroi_data["optimized_mroi"]
# Plot ROI
fig_roi = go.Figure()
fig_roi.add_trace(
go.Bar(
x=["Actual ROI"],
y=[actual_roi],
name="Actual ROI",
marker_color="cyan",
width=1,
text=[format_value(actual_roi)],
textposition="auto",
textfont=dict(color="black", size=14),
)
)
fig_roi.add_trace(
go.Bar(
x=["Optimized ROI"],
y=[optimized_roi],
name="Optimized ROI",
marker_color="blueviolet",
width=1,
text=[format_value(optimized_roi)],
textposition="auto",
textfont=dict(color="black", size=14),
)
)
fig_roi.update_layout(
annotations=[
dict(
x=0.5,
y=1.3,
xref="paper",
yref="paper",
text="ROI",
showarrow=False,
font=dict(size=14),
)
],
barmode="group",
bargap=0,
showlegend=False,
width=110,
height=110,
xaxis=dict(
showticklabels=True,
showgrid=False,
tickangle=0,
ticktext=["Actual", "Optimized"],
tickvals=["Actual ROI", "Optimized ROI"],
),
yaxis=dict(showticklabels=False, showgrid=False),
margin=dict(t=20, b=20, r=0, l=0),
)
# Plot MROI
fig_mroi = go.Figure()
fig_mroi.add_trace(
go.Bar(
x=["Actual MROI"],
y=[actual_mroi],
name="Actual MROI",
marker_color="cyan",
width=1,
text=[format_value(actual_mroi)],
textposition="auto",
textfont=dict(color="black", size=14),
)
)
fig_mroi.add_trace(
go.Bar(
x=["Optimized MROI"],
y=[optimized_mroi],
name="Optimized MROI",
marker_color="blueviolet",
width=1,
text=[format_value(optimized_mroi)],
textposition="auto",
textfont=dict(color="black", size=14),
)
)
fig_mroi.update_layout(
annotations=[
dict(
x=0.5,
y=1.3,
xref="paper",
yref="paper",
text="MROI",
showarrow=False,
font=dict(size=14),
)
],
barmode="group",
bargap=0,
showlegend=False,
width=110,
height=110,
xaxis=dict(
showticklabels=True,
showgrid=False,
tickangle=0,
ticktext=["Actual", "Optimized"],
tickvals=["Actual MROI", "Optimized MROI"],
),
yaxis=dict(showticklabels=False, showgrid=False),
margin=dict(t=20, b=20, r=0, l=0),
)
# Store plots
channel_roi_mroi_plot[channel] = {"fig_roi": fig_roi, "fig_mroi": fig_mroi}
return channel_roi_mroi_plot
# Function to save the current scenario with the mentioned name
def save_scenario(
scenario_dict,
metrics_selected,
panel_selected,
optimization_goal,
channel_roi_mroi,
timeframe,
multiplier,
):
# Remove extra space at start and ends
if st.session_state["scenario_name"] is not None:
st.session_state["scenario_name"] = st.session_state["scenario_name"].strip()
if (
st.session_state["scenario_name"] is None
or st.session_state["scenario_name"] == ""
):
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Please provide a name to save the scenario.",
"icon": "⚠️",
}
return
# Check the scenario name
if not (
word_length_limit_lower
<= len(st.session_state["scenario_name"])
<= word_length_limit_upper
and bool(re.match("^[A-Za-z0-9_]*$", st.session_state["scenario_name"]))
):
# Store the warning message details in session state
st.session_state.message_display = {
"type": "warning",
"message": f"Please provide a valid scenario name ({word_length_limit_lower}-{word_length_limit_upper} characters, only A-Z, a-z, 0-9, and _).",
"icon": "⚠️",
}
return
# Check if the dictionary is empty
if not scenario_dict:
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Nothing to save. The scenario data is empty.",
"icon": "⚠️",
}
return
# Add additional scenario details
scenario_dict["panel_selected"] = panel_selected
scenario_dict["metrics_selected"] = metrics_selected
scenario_dict["optimization"] = optimization_goal
scenario_dict["channel_roi_mroi"] = channel_roi_mroi
scenario_dict["timeframe"] = timeframe
scenario_dict["multiplier"] = multiplier
# Load existing scenarios
saved_scenarios_dict = st.session_state["project_dct"]["saved_scenarios"][
"saved_scenarios_dict"
]
# Check if the name is already taken
if st.session_state["scenario_name"] in saved_scenarios_dict.keys():
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Name already exists. Please change the name or delete the existing scenario from the Saved Scenario page.",
"icon": "⚠️",
}
return
# Update the dictionary with the new scenario
saved_scenarios_dict[st.session_state["scenario_name"]] = scenario_dict
# Update the updated dictionary
st.session_state["project_dct"]["saved_scenarios"][
"saved_scenarios_dict"
] = saved_scenarios_dict
# Update DB
update_db(
prj_id=st.session_state["project_number"],
page_nam="Scenario Planner",
file_nam="project_dct",
pkl_obj=pickle.dumps(st.session_state["project_dct"]),
schema=schema,
)
# Store the message details in session state
st.session_state.message_display = {
"type": "success",
"message": f"Scenario '{st.session_state.scenario_name}' has been successfully saved!",
"icon": "💾",
}
st.toast(
f"Scenario '{st.session_state.scenario_name}' has been successfully saved!",
icon="💾",
)
# Clear the scenario name input
st.session_state["scenario_name"] = ""
# Function to calculate the RGBA color code based on the spends value and region boundaries
def calculate_rgba(spends_value, region_start_end):
# Get region start and end points
start_value = region_start_end["start_value"]
end_value = region_start_end["end_value"]
left_value = region_start_end["left_value"]
right_value = region_start_end["right_value"]
# Calculate alpha dynamically based on the position within the range
def calculate_alpha(position, start, end, min_alpha=0.1, max_alpha=0.4):
return min_alpha + (max_alpha - min_alpha) * (position - start) / (end - start)
if start_value <= spends_value <= left_value:
# Yellow range (0, 128, 0) - More transparent towards left, darker towards start
alpha = calculate_alpha(spends_value, left_value, start_value)
return (255, 255, 0, alpha) # RGB for yellow
elif left_value < spends_value <= right_value:
# Green range (0, 128, 0) - More transparent towards right, darker towards left
alpha = calculate_alpha(spends_value, right_value, left_value)
return (0, 128, 0, alpha) # RGB for green
elif right_value < spends_value <= end_value:
# Red range (255, 0, 0) - More transparent towards right, darker towards end
alpha = calculate_alpha(spends_value, right_value, end_value)
return (255, 0, 0, alpha) # RGB for red
# Function to format and display the channel name with a color and background color
def display_channel_name_with_background_color(
channel_name, background_color=(0, 128, 0, 0.1)
):
formatted_name = name_formating(channel_name)
# Unpack the RGBA values
r, g, b, a = background_color
# Create the HTML content with specified background color
html_content = f"""