import torch import os import random import gradio as gr from transformers import pipeline import base64 from datasets import load_dataset from diffusers import DiffusionPipeline from huggingface_hub import login import numpy as np def guessanImage(model, image): #model = "microsoft/resnet-50" # st.write("using model:"+model) imgclassifier = pipeline("image-classification", model=model) if image is not None: description = imgclassifier(image) return description with gr.Blocks() as demo: with gr.Tab("Lion"): radio = gr.Radio(["microsoft/resnet-50", "google/vit-base-patch16-224", "apple/mobilevit-small"], label="Select a Classifier", info="Image Classifier?") with gr.Tab("Tiger"): radio = gr.Radio(["zzmicrosoft/resnet-50", "google/vit-base-patch16-224", "apple/mobilevit-small"], label="Select a Classifier", info="Image Classifier?") demo = gr.Interface( fn=guessanImage, inputs=[radio, gr.Image(type="pil")], outputs=["text"], ) demo.launch()