Muhammad Anas Akhtar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,96 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
-
import
|
|
|
5 |
|
6 |
# Use a pipeline as a high-level helper
|
7 |
from transformers import pipeline
|
8 |
|
|
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
10 |
|
11 |
-
|
12 |
caption_image = pipeline("image-to-text",
|
13 |
-
|
|
|
14 |
|
|
|
15 |
narrator = pipeline("text-to-speech",
|
16 |
-
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def generate_audio(text):
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
|
7 |
# Use a pipeline as a high-level helper
|
8 |
from transformers import pipeline
|
9 |
|
10 |
+
# Set device
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
print(f"Using device: {device}")
|
13 |
|
14 |
+
# Initialize the pipelines
|
15 |
caption_image = pipeline("image-to-text",
|
16 |
+
model="Salesforce/blip-image-captioning-large",
|
17 |
+
device=device)
|
18 |
|
19 |
+
# Using a different TTS model that's more stable
|
20 |
narrator = pipeline("text-to-speech",
|
21 |
+
model="microsoft/speecht5_tts",
|
22 |
+
device=device)
|
23 |
|
24 |
+
def ensure_output_dir():
|
25 |
+
"""Ensure the output directory exists"""
|
26 |
+
output_dir = os.path.join(os.path.expanduser("~"), "AudioCaptions")
|
27 |
+
os.makedirs(output_dir, exist_ok=True)
|
28 |
+
return output_dir
|
29 |
|
30 |
def generate_audio(text):
|
31 |
+
"""
|
32 |
+
Generate audio from text and save it
|
33 |
+
"""
|
34 |
+
try:
|
35 |
+
# Generate the speech
|
36 |
+
speech = narrator(text)
|
37 |
+
|
38 |
+
# Create output directory and file path
|
39 |
+
output_dir = ensure_output_dir()
|
40 |
+
output_path = os.path.join(output_dir, "caption_audio.wav")
|
41 |
+
|
42 |
+
# Save the audio file
|
43 |
+
with open(output_path, "wb") as f:
|
44 |
+
f.write(speech["audio"])
|
45 |
+
|
46 |
+
return output_path
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Error generating audio: {str(e)}")
|
49 |
+
raise gr.Error(f"Failed to generate audio: {str(e)}")
|
50 |
+
|
51 |
+
def caption_my_image(image):
|
52 |
+
"""
|
53 |
+
Generate caption for image and convert it to speech
|
54 |
+
"""
|
55 |
+
try:
|
56 |
+
if image is None:
|
57 |
+
raise gr.Error("Please upload an image")
|
58 |
+
|
59 |
+
# Generate caption
|
60 |
+
captions = caption_image(images=image)
|
61 |
+
if not captions or len(captions) == 0:
|
62 |
+
raise gr.Error("Could not generate caption for this image")
|
63 |
+
|
64 |
+
caption_text = captions[0]['generated_text']
|
65 |
+
print(f"Generated caption: {caption_text}")
|
66 |
+
|
67 |
+
# Generate audio from caption
|
68 |
+
audio_path = generate_audio(caption_text)
|
69 |
+
|
70 |
+
return [audio_path, caption_text]
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error in caption_my_image: {str(e)}")
|
73 |
+
raise gr.Error(f"Failed to process image: {str(e)}")
|
74 |
+
|
75 |
+
# Create the Gradio interface
|
76 |
+
demo = gr.Interface(
|
77 |
+
fn=caption_my_image,
|
78 |
+
inputs=[
|
79 |
+
gr.Image(label="Upload Image", type="pil")
|
80 |
+
],
|
81 |
+
outputs=[
|
82 |
+
gr.Audio(label="Generated Audio"),
|
83 |
+
gr.Textbox(label="Generated Caption")
|
84 |
+
],
|
85 |
+
title="Image Captioning with Audio",
|
86 |
+
description="""
|
87 |
+
Upload an image and the application will:
|
88 |
+
1. Generate a descriptive caption for the image
|
89 |
+
2. Convert the caption to speech
|
90 |
+
""",
|
91 |
+
examples=[],
|
92 |
+
cache_examples=False
|
93 |
+
)
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
demo.launch()
|