2001kaye commited on
Commit
1376a6e
·
verified ·
1 Parent(s): 27f5cb6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -23
app.py CHANGED
@@ -1,11 +1,11 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -17,31 +17,22 @@ def respond(
17
  ):
18
  messages = [{"role": "system", "content": system_message}]
19
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
@@ -58,6 +49,5 @@ demo = gr.ChatInterface(
58
  ],
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from llama_cpp import Llama
 
 
 
 
 
3
 
4
+ # Load the Mistral model
5
+ llm = Llama.from_pretrained(
6
+ repo_id="bartowski/Mistral-Small-Instruct-2409-GGUF",
7
+ filename="Mistral-Small-Instruct-2409-IQ2_M.gguf",
8
+ )
9
 
10
  def respond(
11
  message,
 
17
  ):
18
  messages = [{"role": "system", "content": system_message}]
19
 
20
+ # Add history to messages
21
  for val in history:
22
  if val[0]:
23
  messages.append({"role": "user", "content": val[0]})
24
  if val[1]:
25
  messages.append({"role": "assistant", "content": val[1]})
26
 
27
+ # Add the current user message
28
  messages.append({"role": "user", "content": message})
29
 
30
+ # Generate the response using the Mistral model
31
+ response = llm.create_chat_completion(messages=messages)
32
 
33
+ return response["choices"][0]["message"]["content"] # Adjust based on your model's output format
 
 
 
 
 
 
 
34
 
35
+ # Set up Gradio Chat Interface
 
 
 
 
 
36
  demo = gr.ChatInterface(
37
  respond,
38
  additional_inputs=[
 
49
  ],
50
  )
51
 
 
52
  if __name__ == "__main__":
53
+ demo.launch()