import spaces import gradio as gr import sys import time import os import random from PIL import Image # os.environ["CUDA_VISIBLE_DEVICES"] = "" # Create the gr.State component *outside* the gr.Blocks context predictor_state = gr.State(None) def init_predictor(task_type: str): import torch from skyreelsinfer import TaskType from skyreelsinfer.offload import OffloadConfig from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError try: predictor = SkyReelsVideoInfer( task_type=TaskType.I2V if task_type == "i2v" else TaskType.T2V, model_id="Skywork/skyreels-v1-Hunyuan-i2v", quant_model=True, is_offload=True, offload_config=OffloadConfig( high_cpu_memory=True, parameters_level=True, ), use_multiprocessing=False, ) return "Model loaded successfully!", predictor # Return predictor except (RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError) as e: return f"Error: Model not found. Details: {e}", None except Exception as e: return f"Error loading model: {e}", None init_predictor('i2v') @spaces.GPU(duration=80) def generate_video(prompt, image, predictor): from diffusers.utils import export_to_video from diffusers.utils import load_image import os if image == None: return "Error: For i2v, provide image path.", "{}" if not isinstance(prompt, str): return "Error: No prompt.", "{}" #if seed == -1: random.seed(time.time()) seed = int(random.randrange(4294967294)) kwargs = { "prompt": prompt, "height": 256, "width": 256, "num_frames": 24, "num_inference_steps": 30, "seed": int(seed), "guidance_scale": 7.0, "embedded_guidance_scale": 1.0, "negative_prompt": "bad quality, blur", "cfg_for": False, } kwargs["image"] = load_image(image=image) output = predictor.inference(kwargs) frames = output save_dir = f"./result/{task_type}" os.makedirs(save_dir, exist_ok=True) video_out_file = f"{save_dir}/{prompt[:100]}_{int(seed)}.mp4" print(f"Generating video: {video_out_file}") export_to_video(frames, video_out_file, fps=24) return video_out_file def display_image(file): if file is not None: return Image.open(file.name) else: return None # --- Minimal Gradio Interface --- with gr.Blocks() as demo: image_file = gr.File(label="Image Prompt (Required)", file_types=["image"]) image_file_preview = gr.Image(label="Image Prompt Preview", interactive=False) prompt_textbox = gr.Textbox(label="Prompt") generate_button = gr.Button("Generate") output_video = gr.Video(label="Output Video") # Just a textbox image_file.change( display_image, inputs=[image_file], outputs=[image_file_preview] ) generate_button.click( fn=generate_video, inputs=[prompt_textbox, image_file, predictor_state], outputs=[output_video], ) demo.launch()