import gradio as gr import os import time import random os.environ["CUDA_VISIBLE_DEVICES"] = "" def get_transformer_model_id(task_type: str) -> str: if task_type == "i2v": return "Skywork/skyreels-v1-Hunyuan-i2v" else: return "Skywork/skyreels-v1-Hunyuan-t2v" def init_predictor(task_type: str): # ALL IMPORTS NOW INSIDE THIS FUNCTION import torch from skyreelsinfer import TaskType from skyreelsinfer.offload import OffloadConfig from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError try: predictor = SkyReelsVideoInfer( task_type=TaskType.I2V if task_type == "i2v" else TaskType.T2V, model_id=get_transformer_model_id(task_type), quant_model=True, is_offload=True, offload_config=OffloadConfig( high_cpu_memory=True, parameters_level=True, ), use_multiprocessing=False, ) return "Model loaded successfully!", predictor # Return predictor except (RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError) as e: return f"Error: Model not found. Details: {e}", None except Exception as e: return f"Error loading model: {e}", None def generate_video(prompt, seed, image, task_type, predictor): # predictor as argument # IMPORTS INSIDE THIS FUNCTION TOO from diffusers.utils import export_to_video from diffusers.utils import load_image import os if task_type == "i2v" and not isinstance(image, str): return "Error: For i2v, provide image path.", "{}" if not isinstance(prompt, str) or not isinstance(seed, (int, float)): return "Error: Invalid inputs.", "{}" if seed == -1: random.seed(time.time()) seed = int(random.randrange(4294967294)) kwargs = { "prompt": prompt, "height": 256, "width": 256, "num_frames": 24, "num_inference_steps": 30, "seed": int(seed), "guidance_scale": 7.0, "embedded_guidance_scale": 1.0, "negative_prompt": "bad quality, blur", "cfg_for": False, } if task_type == "i2v": if image is None or not os.path.exists(image): return "Error: Image not found.", "{}" try: kwargs["image"] = load_image(image=image) except Exception as e: return f"Error loading image: {e}", "{}" try: if predictor is None: return "Error: Model not init.", "{}" output = predictor.inference(kwargs) frames = output save_dir = f"./result/{task_type}" os.makedirs(save_dir, exist_ok=True) video_out_file = f"{save_dir}/{prompt[:100]}_{int(seed)}.mp4" print(f"Generating video: {video_out_file}") export_to_video(frames, video_out_file, fps=24) return video_out_file, str(kwargs) except Exception as e: return f"Error: {e}", "{}" # --- Gradio Interface --- with gr.Blocks() as demo: with gr.Row(): task_type_dropdown = gr.Dropdown( choices=["i2v", "t2v"], label="Task", value="t2v" ) load_model_button = gr.Button("Load Model") model_status = gr.Textbox(label="Status") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt") seed = gr.Number(label="Seed", value=-1) image = gr.Image(label="Image (i2v)", type="filepath") submit_button = gr.Button("Generate") with gr.Column(): output_video = gr.Video(label="Video") output_params = gr.Textbox(label="Params") load_model_button.click( fn=init_predictor, inputs=[task_type_dropdown], outputs=[model_status, "state"], # Output to a hidden state ) submit_button.click( fn=generate_video, inputs=[prompt, seed, image, task_type_dropdown, "state"], # Input from state outputs=[output_video, output_params], ) demo.launch()