import spaces import gradio as gr import argparse import sys import time import os import random #sys.path.append("..") from skyreelsinfer import TaskType from skyreelsinfer.offload import OffloadConfig from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer from diffusers.utils import export_to_video from diffusers.utils import load_image import torch torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False torch.set_float32_matmul_precision("highest") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") predictor = None task_type = None def get_transformer_model_id(task_type:str) -> str: return "Skywork/SkyReels-V1-Hunyuan-I2V" if task_type == "i2v" else "Skywork/SkyReels-V1-Hunyuan-T2V" def init_predictor(task_type:str, gpu_num:int=1): global predictor predictor = SkyReelsVideoInfer( task_type= TaskType.I2V if task_type == "i2v" else TaskType.T2V, model_id=get_transformer_model_id(task_type), quant_model=True, world_size=gpu_num, is_offload=True, offload_config=OffloadConfig( high_cpu_memory=True, parameters_level=True, compiler_transformer=False, ) ) def generate_video(prompt, seed, image=None): global task_type print(f"image:{type(image)}") if seed == -1: random.seed(time.time()) seed = int(random.randrange(4294967294)) kwargs = { "prompt": prompt, "height": 512, "width": 512, "num_frames": 97, "num_inference_steps": 30, "seed": seed, "guidance_scale": 6.0, "embedded_guidance_scale": 1.0, "negative_prompt": "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion", "cfg_for": False, } if task_type == "i2v": assert image is not None, "please input image" kwargs["image"] = load_image(image=image) global predictor output = predictor.inference(kwargs) save_dir = f"./result/{task_type}" os.makedirs(save_dir, exist_ok=True) video_out_file = f"{save_dir}/{prompt[:100].replace('/','')}_{seed}.mp4" print(f"generate video, local path: {video_out_file}") export_to_video(output, video_out_file, fps=24) return video_out_file, kwargs def create_gradio_interface(task_type): """Create a Gradio interface based on the task type.""" if task_type == "i2v": with gr.Blocks() as demo: with gr.Row(): image = gr.Image(label="Upload Image", type="filepath") prompt = gr.Textbox(label="Input Prompt") seed = gr.Number(label="Random Seed", value=-1) submit_button = gr.Button("Generate Video") output_video = gr.Video(label="Generated Video") output_params = gr.Textbox(label="Output Parameters") # Submit button logic submit_button.click( fn=generate_video, inputs=[prompt, seed, image], outputs=[output_video, output_params], ) elif task_type == "t2v": with gr.Blocks() as demo: with gr.Row(): prompt = gr.Textbox(label="Input Prompt") seed = gr.Number(label="Random Seed", value=-1) submit_button = gr.Button("Generate Video") output_video = gr.Video(label="Generated Video") output_params = gr.Textbox(label="Output Parameters") # Submit button logic submit_button.click( fn=generate_video, inputs=[prompt, seed], outputs=[output_video, output_params], # Pass task_type as additional input ) return demo if __name__ == "__main__": # Parse command-line arguments init_predictor(task_type="i2v", gpu_num=1) demo = create_gradio_interface("i2v") demo.launch()