Spaces:
Running
on
Zero
Running
on
Zero
Update skyreelsinfer/skyreels_video_infer.py
Browse files
skyreelsinfer/skyreels_video_infer.py
CHANGED
@@ -1,20 +1,22 @@
|
|
1 |
import logging
|
2 |
-
import os
|
3 |
import time
|
4 |
from datetime import timedelta
|
5 |
from typing import Any
|
6 |
from typing import Dict
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
from diffusers import
|
11 |
-
from
|
12 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
from . import TaskType
|
15 |
-
from .offload import Offload
|
16 |
-
from .offload import OffloadConfig
|
17 |
-
from .pipelines import SkyreelsVideoPipeline
|
18 |
|
19 |
logger = logging.getLogger("SkyReelsVideoInfer")
|
20 |
logger.setLevel(logging.DEBUG)
|
@@ -29,11 +31,11 @@ logger.addHandler(console_handler)
|
|
29 |
class SkyReelsVideoInfer:
|
30 |
def __init__(
|
31 |
self,
|
32 |
-
task_type
|
33 |
model_id: str,
|
34 |
quant_model: bool = True,
|
35 |
is_offload: bool = True,
|
36 |
-
offload_config
|
37 |
use_multiprocessing: bool = False,
|
38 |
):
|
39 |
self.task_type = task_type
|
@@ -50,11 +52,19 @@ class SkyReelsVideoInfer:
|
|
50 |
base_model_id: str = "hunyuanvideo-community/HunyuanVideo",
|
51 |
quant_model: bool = True,
|
52 |
device: str = "cpu",
|
53 |
-
)
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
from torchao.quantization import float8_weight_only
|
57 |
from torchao.quantization import quantize_
|
|
|
|
|
|
|
|
|
58 |
|
59 |
text_encoder = LlamaModel.from_pretrained(
|
60 |
base_model_id,
|
@@ -81,7 +91,10 @@ class SkyReelsVideoInfer:
|
|
81 |
return pipe
|
82 |
|
83 |
def _initialize_pipeline(self):
|
84 |
-
|
|
|
|
|
|
|
85 |
model_id=self.model_id, quant_model=self.quant_model, device="cpu"
|
86 |
)
|
87 |
|
@@ -92,9 +105,11 @@ class SkyReelsVideoInfer:
|
|
92 |
)
|
93 |
|
94 |
def inference(self, kwargs):
|
|
|
|
|
95 |
if self.task_type == TaskType.I2V:
|
96 |
image = kwargs.pop("image")
|
97 |
-
output = self.pipe(image=image, **kwargs)
|
98 |
else:
|
99 |
-
output = self.pipe(**kwargs)
|
100 |
-
return output.frames
|
|
|
1 |
import logging
|
2 |
+
import os # Keep os here
|
3 |
import time
|
4 |
from datetime import timedelta
|
5 |
from typing import Any
|
6 |
from typing import Dict
|
7 |
|
8 |
+
# DELAY ALL THESE IMPORTS:
|
9 |
+
# import torch
|
10 |
+
# from diffusers import HunyuanVideoTransformer3DModel
|
11 |
+
# from diffusers import DiffusionPipeline
|
12 |
+
# from PIL import Image
|
13 |
+
# from transformers import LlamaModel
|
14 |
+
|
15 |
+
# from . import TaskType
|
16 |
+
# from .offload import Offload
|
17 |
+
# from .offload import OffloadConfig
|
18 |
+
# from .pipelines import SkyreelsVideoPipeline
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
21 |
logger = logging.getLogger("SkyReelsVideoInfer")
|
22 |
logger.setLevel(logging.DEBUG)
|
|
|
31 |
class SkyReelsVideoInfer:
|
32 |
def __init__(
|
33 |
self,
|
34 |
+
task_type, # No TaskType.
|
35 |
model_id: str,
|
36 |
quant_model: bool = True,
|
37 |
is_offload: bool = True,
|
38 |
+
offload_config = None, # No OffloadConfig
|
39 |
use_multiprocessing: bool = False,
|
40 |
):
|
41 |
self.task_type = task_type
|
|
|
52 |
base_model_id: str = "hunyuanvideo-community/HunyuanVideo",
|
53 |
quant_model: bool = True,
|
54 |
device: str = "cpu",
|
55 |
+
):
|
56 |
+
# DELAYED IMPORTS:
|
57 |
+
import torch
|
58 |
+
from diffusers import HunyuanVideoTransformer3DModel
|
59 |
+
from diffusers import DiffusionPipeline
|
60 |
+
from PIL import Image
|
61 |
+
from transformers import LlamaModel
|
62 |
from torchao.quantization import float8_weight_only
|
63 |
from torchao.quantization import quantize_
|
64 |
+
from .pipelines import SkyreelsVideoPipeline # Local import
|
65 |
+
|
66 |
+
|
67 |
+
logger.info(f"load model model_id:{model_id} quan_model:{quant_model} device:{device}")
|
68 |
|
69 |
text_encoder = LlamaModel.from_pretrained(
|
70 |
base_model_id,
|
|
|
91 |
return pipe
|
92 |
|
93 |
def _initialize_pipeline(self):
|
94 |
+
#More Delayed Imports
|
95 |
+
from .offload import Offload
|
96 |
+
|
97 |
+
self.pipe = self._load_model( #No : SkyreelsVideoPipeline
|
98 |
model_id=self.model_id, quant_model=self.quant_model, device="cpu"
|
99 |
)
|
100 |
|
|
|
105 |
)
|
106 |
|
107 |
def inference(self, kwargs):
|
108 |
+
#DELAYED IMPORTS
|
109 |
+
from . import TaskType
|
110 |
if self.task_type == TaskType.I2V:
|
111 |
image = kwargs.pop("image")
|
112 |
+
output = self.pipe(image=image, **kwargs)
|
113 |
else:
|
114 |
+
output = self.pipe(**kwargs)
|
115 |
+
return output.frames
|