Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import argparse | |
import sys | |
import time | |
import os | |
import random | |
from skyreelsinfer.offload import OffloadConfig | |
from skyreelsinfer import TaskType | |
from skyreelsinfer.skyreels_video_infer import SkyReelsVideoSingleGpuInfer | |
from diffusers.utils import export_to_video | |
from diffusers.utils import load_image | |
from PIL import Image | |
import torch | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False | |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False | |
torch.backends.cudnn.allow_tf32 = True | |
torch.backends.cudnn.deterministic = False | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cuda.preferred_blas_library="cublas" | |
torch.backends.cuda.preferred_linalg_library="cusolver" | |
torch.set_float32_matmul_precision("high") | |
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1") | |
os.environ["SAFETENSORS_FAST_GPU"] = "1" | |
os.putenv("TOKENIZERS_PARALLELISM","False") | |
def init_predictor(): | |
global predictor | |
predictor = SkyReelsVideoSingleGpuInfer( | |
task_type= TaskType.I2V, | |
model_id="Skywork/SkyReels-V1-Hunyuan-I2V", | |
quant_model=False, | |
is_offload=False, | |
offload_config=OffloadConfig( | |
high_cpu_memory=True, | |
parameters_level=True, | |
compiler_transformer=False, | |
) | |
) | |
def generate_video(prompt, image, size, steps, frames, guidance_scale, progress=gr.Progress(track_tqdm=True) ): | |
print(f"image:{type(image)}") | |
random.seed(time.time()) | |
seed = int(random.randrange(4294967294)) | |
kwargs = { | |
"prompt": prompt, | |
"height": size, | |
"width": size, | |
"num_frames": frames, | |
"num_inference_steps": steps, | |
"seed": seed, | |
"guidance_scale": guidance_scale, | |
"embedded_guidance_scale": 1.0, | |
"negative_prompt": "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion", | |
"cfg_for": False, | |
} | |
assert image is not None, "please input image" | |
img = load_image(image=image) | |
img.resize((size,size), Image.LANCZOS) | |
kwargs["image"] = img | |
output = predictor.inference(kwargs) | |
save_dir = f"./" | |
video_out_file = f"{seed}.mp4" | |
print(f"generate video, local path: {video_out_file}") | |
export_to_video(output, video_out_file, fps=24) | |
return video_out_file | |
def create_gradio_interface(): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
image = gr.Image(label="Upload Image", type="filepath") | |
prompt = gr.Textbox(label="Input Prompt") | |
size = gr.Slider( | |
label="Size", | |
minimum=256, | |
maximum=1024, | |
step=16, | |
value=368, | |
) | |
frames = gr.Slider( | |
label="Number of Frames", | |
minimum=16, | |
maximum=256, | |
step=12, | |
value=48, | |
) | |
steps = gr.Slider( | |
label="Number of Steps", | |
minimum=1, | |
maximum=96, | |
step=1, | |
value=20, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1.0, | |
maximum=16.0, | |
step=.1, | |
value=6.0, | |
) | |
submit_button = gr.Button("Generate Video") | |
output_video = gr.Video(label="Generated Video") | |
submit_button.click( | |
fn=generate_video, | |
inputs=[prompt, image, size, steps, frames, guidance_scale], | |
outputs=[output_video], | |
) | |
return demo | |
if __name__ == "__main__": | |
init_predictor() | |
demo = create_gradio_interface() | |
demo.launch() |