File size: 1,938 Bytes
a685456 b79fd6d a685456 b79fd6d a685456 b79fd6d a685456 5ea3018 a685456 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
base_model: HuggingFaceTB/SmolVLM2-2.2B-Instruct
datasets: smolagents/aguvis-stage-2
library_name: transformers
model_name: SmolVLM2-2.2B-Instruct-Agentic-GUI
tags:
- generated_from_trainer
- open-r1
- vision-language
- vlm
- trl
- sft
licence: license
---
# Model Card for SmolVLM2-2.2B-Instruct-Agentic-GUI
This model is a fine-tuned version of [HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) on the [smolagents/aguvis-stage-2](https://huggingface.co/datasets/smolagents/aguvis-stage-2) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="smolagents/SmolVLM2-2.2B-Instruct-Agentic-GUI", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/huggingface/smolagents/runs/3tovwz1m)
This model was trained with SFT.
### Framework versions
- TRL: 0.18.0
- Transformers: 4.52.3
- Pytorch: 2.6.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |