## ⭐ Quick Start 1. Load model ```python import ast import torch from PIL import Image, ImageDraw from qwen_vl_utils import process_vision_info from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor def draw_point(image_input, point=None, radius=5): if isinstance(image_input, str): image = Image.open(BytesIO(requests.get(image_input).content)) if image_input.startswith('http') else Image.open(image_input) else: image = image_input if point: x, y = point[0] * image.width, point[1] * image.height ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') display(image) return model = Qwen2VLForConditionalGeneration.from_pretrained( "showlab/ShowUI-2B", torch_dtype=torch.bfloat16, device_map="auto" ) min_pixels = 256*28*28 max_pixels = 1344*28*28 processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) ``` 2. Load screenshot and query ```python img_url = 'web_dbd7514b-9ca3-40cd-b09a-990f7b955da1.png' query = "Nahant" _SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." messages = [ { "role": "user", "content": [ {"type": "text", "text": _SYSTEM}, {"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels}, {"type": "text", "text": query} ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] click_xy = ast.literal_eval(output_text) # [0.73, 0.21] draw_point(img_url, click_xy, 10) ``` This will visualize the grounding results like (where the red points are [x,y]) ![download](https://github.com/user-attachments/assets/8fe2783d-05b6-44e6-a26c-8718d02b56cb)