Antonin Raffin commited on
Commit
04a45ba
·
1 Parent(s): a7dcee2

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalker-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 334.73 +/- 0.28
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: BipedalWalker-v3
20
+ type: BipedalWalker-v3
21
+ ---
22
+
23
+ # **TQC** Agent playing **BipedalWalker-v3**
24
+ This is a trained model of a **TQC** agent playing **BipedalWalker-v3**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo tqc --env BipedalWalker-v3 -orga sb3 -f logs/
41
+ python enjoy.py --algo tqc --env BipedalWalker-v3 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo tqc --env BipedalWalker-v3 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo tqc --env BipedalWalker-v3 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 256),
54
+ ('buffer_size', 300000),
55
+ ('ent_coef', 'auto'),
56
+ ('gamma', 0.98),
57
+ ('gradient_steps', 64),
58
+ ('learning_rate', 0.00073),
59
+ ('learning_starts', 10000),
60
+ ('n_timesteps', 500000.0),
61
+ ('policy', 'MlpPolicy'),
62
+ ('policy_kwargs', 'dict(log_std_init=-3, net_arch=[400, 300])'),
63
+ ('tau', 0.02),
64
+ ('train_freq', 64),
65
+ ('use_sde', True),
66
+ ('normalize', False)])
67
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - tqc
4
+ - - env
5
+ - BipedalWalker-v3
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 1977485241
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - buffer_size
5
+ - 300000
6
+ - - ent_coef
7
+ - auto
8
+ - - gamma
9
+ - 0.98
10
+ - - gradient_steps
11
+ - 64
12
+ - - learning_rate
13
+ - 0.00073
14
+ - - learning_starts
15
+ - 10000
16
+ - - n_timesteps
17
+ - 500000.0
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(log_std_init=-3, net_arch=[400, 300])
22
+ - - tau
23
+ - 0.02
24
+ - - train_freq
25
+ - 64
26
+ - - use_sde
27
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8866aed36ecabcf56442b874800ece0dbf8a33177e3ed9db5579fa0fa447b4cc
3
+ size 444608
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 334.7348148, "std_reward": 0.28109425008840366, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T21:20:50.614203"}
tqc-BipedalWalker-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a6116d8a395b7a04b4c1d3accba52ddb9ae7172e7a17ce7a81ada7bd510e6d1
3
+ size 6098309
tqc-BipedalWalker-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
tqc-BipedalWalker-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10befbd3b3a5f49a0e84bf3252de1f900ab29666bf0be7feb7071003f92dcfb9
3
+ size 1065467
tqc-BipedalWalker-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fd802dbf89613ed7ab343f4a2a574545e9a1ea26b40c613b7f18397ccbdac01
3
+ size 2237085
tqc-BipedalWalker-v3/data ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
5
+ "__module__": "sb3_contrib.tqc.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TQCPolicy.__init__ at 0x7f216a90a710>",
8
+ "_build": "<function TQCPolicy._build at 0x7f216a90a7a0>",
9
+ "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f216a90a830>",
10
+ "reset_noise": "<function TQCPolicy.reset_noise at 0x7f216a90a8c0>",
11
+ "make_actor": "<function TQCPolicy.make_actor at 0x7f216a90a950>",
12
+ "make_critic": "<function TQCPolicy.make_critic at 0x7f216a90a9e0>",
13
+ "forward": "<function TQCPolicy.forward at 0x7f216a90aa70>",
14
+ "_predict": "<function TQCPolicy._predict at 0x7f216a90ab00>",
15
+ "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f216a90ab90>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x7f216a96a690>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "log_std_init": -3,
22
+ "net_arch": [
23
+ 400,
24
+ 300
25
+ ],
26
+ "use_sde": true
27
+ },
28
+ "observation_space": {
29
+ ":type:": "<class 'gym.spaces.box.Box'>",
30
+ ":serialized:": "gASVYwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxiFlGgKiUNgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsYhZRoColDYAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLGIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSxiFlGgoiUMYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSxiFlHViLg==",
31
+ "dtype": "float32",
32
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
33
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
34
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
35
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
36
+ "_np_random": null,
37
+ "_shape": [
38
+ 24
39
+ ]
40
+ },
41
+ "action_space": {
42
+ ":type:": "<class 'gym.spaces.box.Box'>",
43
+ ":serialized:": "gASVKwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgKiUMQAACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLBIWUaAqJQxAAAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsEhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwSFlGgoiUMEAQEBAZR0lGKMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGg4jAVzdGF0ZZR9lCiMA2tleZRoEGgSSwCFlGgUh5RSlChLAU1wAoWUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiiULACQAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZRLBIWUdWIu",
44
+ "dtype": "float32",
45
+ "low": "[-1. -1. -1. -1.]",
46
+ "high": "[1. 1. 1. 1.]",
47
+ "bounded_below": "[ True True True True]",
48
+ "bounded_above": "[ True True True True]",
49
+ "_np_random": "RandomState(MT19937)",
50
+ "_shape": [
51
+ 4
52
+ ]
53
+ },
54
+ "n_envs": 1,
55
+ "num_timesteps": 500032,
56
+ "_total_timesteps": 500000,
57
+ "_num_timesteps_at_start": 0,
58
+ "seed": 0,
59
+ "action_noise": null,
60
+ "start_time": 1614710447.130888,
61
+ "learning_rate": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0frrxAjY7KFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
64
+ },
65
+ "tensorboard_log": null,
66
+ "lr_schedule": {
67
+ ":type:": "<class 'function'>",
68
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0frrxAjY7KFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
69
+ },
70
+ "_last_obs": null,
71
+ "_last_episode_starts": null,
72
+ "_last_original_obs": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gASV6gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLGIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNg+JE4Pm9RjLzXTdg9L0yovbP9jD+BklQ/eGQgvwAAAAAAAAAAlWS+vkVP4D0Qfq89i0NGvgAAAAA64MQ+mRzHPoUUzj5zpNo+V4ruPgaJBj8TXB4/Q9ZFPwAAgD8AAIA/lHSUYi4="
75
+ },
76
+ "_episode_num": 909,
77
+ "use_sde": true,
78
+ "sde_sample_freq": -1,
79
+ "_current_progress_remaining": -6.4000000000064e-05,
80
+ "ep_info_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gASVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIri6nBETDdECUhpRSlIwBbJRNZQKMAXSUR0DjXGAqdYnwdX2UKGgGaAloD0MIfVnaqTnKdECUhpRSlGgVTWQCaBZHQONi871yvLZ1fZQoaAZoCWgPQwjFVzuKM9B0QJSGlFKUaBVNWwJoFkdA42o4XoTwlXV9lChoBmgJaA9DCBwo8E6+tHRAlIaUUpRoFU1lAmgWR0DjcMVsdDIBdX2UKGgGaAloD0MIe6NWmP7OdECUhpRSlGgVTWMCaBZHQON4EJ9oexR1fZQoaAZoCWgPQwgykdJs3tB0QJSGlFKUaBVNXQJoFkdA436c94FA3XV9lChoBmgJaA9DCFWFBmKZznRAlIaUUpRoFU1iAmgWR0DjheM6+36RdX2UKGgGaAloD0MIl8XE5qPDdECUhpRSlGgVTWECaBZHQOOMelGmUGF1fZQoaAZoCWgPQwhNE7afDNJ0QJSGlFKUaBVNZgJoFkdA45O9vaDf33V9lChoBmgJaA9DCOF7f4P2YFnAlIaUUpRoFUs7aBZHQOOUeY93bEh1fZQoaAZoCWgPQwjajT7mA4hZwJSGlFKUaBVLNWgWR0DjlTWxREWqdX2UKGgGaAloD0MIVfmekQhdWMCUhpRSlGgVSz5oFkdA45Xzz4L1EnV9lChoBmgJaA9DCPutnSgJBlfAlIaUUpRoFUtLaBZHQOOWs2dEsrd1fZQoaAZoCWgPQwgDCvX0EcFZwJSGlFKUaBVLNWgWR0Djl2naYeDGdX2UKGgGaAloD0MIZ2Ml5llXWsCUhpRSlGgVSy1oFkdA45dtXpOernV9lChoBmgJaA9DCAR2NXnKnlnAlIaUUpRoFUsraBZHQOOYIU0cfeV1fZQoaAZoCWgPQwhL6C6Js49ZwJSGlFKUaBVLMGgWR0DjmNwlTm4idX2UKGgGaAloD0MISOAPP/86WcCUhpRSlGgVSzBoFkdA45jgTx5LRXV9lChoBmgJaA9DCBqiCn+G3FrAlIaUUpRoFUs6aBZHQOOZnTdLxqh1fZQoaAZoCWgPQwjuJY3ROshawJSGlFKUaBVLNmgWR0DjmlydvKlpdX2UKGgGaAloD0MIgzKNJhciV8CUhpRSlGgVS2doFkdA45vQFOoHcHV9lChoBmgJaA9DCHpx4qvdpHRAlIaUUpRoFU16AmgWR0DjoxfTd+G5dX2UKGgGaAloD0MIWTZzSGrac0CUhpRSlGgVTSsDaBZHQOOr4jNB4Ux1fZQoaAZoCWgPQwhr09heC+Z0QJSGlFKUaBVNWwJoFkdA47Mq+BpYcXV9lChoBmgJaA9DCL5MFCF1zXRAlIaUUpRoFU1RAmgWR0Djucdu4wyqdX2UKGgGaAloD0MIV7H4TaHNdECUhpRSlGgVTVoCaBZHQOPAUc4xUNt1fZQoaAZoCWgPQwifjscMFNl0QJSGlFKUaBVNXgJoFkdA48ksyylennV9lChoBmgJaA9DCPim6bND2XRAlIaUUpRoFU1ZAmgWR0Djz9CeRPoFdX2UKGgGaAloD0MIiVxwBj/HdECUhpRSlGgVTWMCaBZHQOPXHenQ6ZJ1fZQoaAZoCWgPQwhtjJ3wEn1eQJSGlFKUaBVNvAFoFkdA49wy/echDHV9lChoBmgJaA9DCPlmmxtTzHRAlIaUUpRoFU1kAmgWR0Dj4sPaufVadX2UKGgGaAloD0MIsB2M2CcXV8CUhpRSlGgVS2loFkdA4+Q3tBF/hHV9lChoBmgJaA9DCPuSjQebx3RAlIaUUpRoFU1qAmgWR0Dj62+vduYQdX2UKGgGaAloD0MIwhVQqGfLdECUhpRSlGgVTVgCaBZHQOPyA2pMpPR1fZQoaAZoCWgPQwhqoWRyKs90QJSGlFKUaBVNYAJoFkdA4/iZgUtZm3V9lChoBmgJaA9DCFX7dDymyHRAlIaUUpRoFU1bAmgWR0Dj/+RLX+VDdX2UKGgGaAloD0MIL/zgfGrRdECUhpRSlGgVTW4CaBZHQOQHHLFId2h1fZQoaAZoCWgPQwhIxf8d0ct0QJSGlFKUaBVNWAJoFkdA5A21bNB4U3V9lChoBmgJaA9DCEEN38L60HRAlIaUUpRoFU1iAmgWR0DkFQxOt4iYdX2UKGgGaAloD0MISUvl7cjVdECUhpRSlGgVTVkCaBZHQOQbl9b/wRZ1fZQoaAZoCWgPQwgnLzIB/9F0QJSGlFKUaBVNZwJoFkdA5CLk3Roh6nV9lChoBmgJaA9DCDEkJxO323RAlIaUUpRoFU1qAmgWR0DkKXKdJ8OTdX2UKGgGaAloD0MITPvm/mrPdECUhpRSlGgVTWcCaBZHQOQwuz9MsYl1fZQoaAZoCWgPQwhDBBxCVbt0QJSGlFKUaBVNXAJoFkdA5DjoJ2ECeXV9lChoBmgJaA9DCGxAhLjy03RAlIaUUpRoFU1mAmgWR0DkQCRUy57PdX2UKGgGaAloD0MI48eYu9a+dECUhpRSlGgVTWUCaBZHQORGrcBjnV51fZQoaAZoCWgPQwguceSByNR0QJSGlFKUaBVNXgJoFkdA5E33bhWHUXV9lChoBmgJaA9DCKzijcxj2nRAlIaUUpRoFU1hAmgWR0DkVJAe8PFvdX2UKGgGaAloD0MI5iDoaJXndECUhpRSlGgVTV4CaBZHQORb16zeGfx1fZQoaAZoCWgPQwhsWikE8sV0QJSGlFKUaBVNZwJoFkdA5GJegP3BYXV9lChoBmgJaA9DCAVsByM2w3RAlIaUUpRoFU1hAmgWR0Dkaap+wTufdX2UKGgGaAloD0MIvHoVGV3LdECUhpRSlGgVTVgCaBZHQORwQWUwBYF1fZQoaAZoCWgPQwjD76ZbNsR0QJSGlFKUaBVNYAJoFkdA5HeDbblA/3V9lChoBmgJaA9DCBke+1ksGmVAlIaUUpRoFU0fAmgWR0DkfVl8D0UXdX2UKGgGaAloD0MIZtgo67fcdECUhpRSlGgVTVsCaBZHQOSEp1/QSjB1fZQoaAZoCWgPQwjPaoE9Ztd0QJSGlFKUaBVNbgJoFkdA5Is984xUN3V9lChoBmgJaA9DCLvRx3yAxXRAlIaUUpRoFU1gAmgWR0Dkkoge0XxfdX2UKGgGaAloD0MId7temuLLdECUhpRSlGgVTVoCaBZHQOSZJPHDJlt1fZQoaAZoCWgPQwgknBa8qMV0QJSGlFKUaBVNYwJoFkdA5KBrZAprlHV9lChoBmgJaA9DCEYiNIJNxHRAlIaUUpRoFU1cAmgWR0DkpwwKFZgYdX2UKGgGaAloD0MIl/+QfrvadECUhpRSlGgVTVYCaBZHQOSv496w+t91fZQoaAZoCWgPQwiZnNoZpj4iQJSGlFKUaBVNEgFoFkdA5LLIoSDh+HV9lChoBmgJaA9DCDkoYaZt2HRAlIaUUpRoFU1iAmgWR0DkuiG6bvw3dX2UKGgGaAloD0MIj95wH7nUdECUhpRSlGgVTWECaBZHQOTAsrz3AVR1fZQoaAZoCWgPQwhmS1ZF+NV0QJSGlFKUaBVNVAJoFkdA5MdFLA57xHV9lChoBmgJaA9DCNiBc0YU0nRAlIaUUpRoFU1jAmgWR0Dkzpink1dgdX2UKGgGaAloD0MIXKrSFtc4RcCUhpRSlGgVS89oFkdA5NDCv+XJHXV9lChoBmgJaA9DCDyFXKlnrlrAlIaUUpRoFUs4aBZHQOTRgFlTWG11fZQoaAZoCWgPQwg9RQ4RN8xZwJSGlFKUaBVLP2gWR0Dk0j90J4SpdX2UKGgGaAloD0MIPulEgqnOWsCUhpRSlGgVSy5oFkdA5NL+iTMaCXV9lChoBmgJaA9DCPQ2NjtS1FnAlIaUUpRoFUs+aBZHQOTTsYxpL291fZQoaAZoCWgPQwj8HB8tzkxawJSGlFKUaBVLQGgWR0Dk1GduJDVpdX2UKGgGaAloD0MI06QUdHtjWcCUhpRSlGgVSzRoFkdA5NUiQSJ0n3V9lChoBmgJaA9DCOV8sffi+ljAlIaUUpRoFUs6aBZHQOTVJr876pJ1fZQoaAZoCWgPQwhAUdmwJsV0QJSGlFKUaBVNZAJoFkdA5NyBneJpFnV9lChoBmgJaA9DCEqX/iXptHRAlIaUUpRoFU1sAmgWR0Dk48P6E8JVdX2UKGgGaAloD0MI56p5jkiya0CUhpRSlGgVTUAGaBZHQOT2E33Fkx11fZQoaAZoCWgPQwjyJOmaCdZ0QJSGlFKUaBVNYwJoFkdA5PycJxFRYXV9lChoBmgJaA9DCKuxhLXx1HRAlIaUUpRoFU1dAmgWR0DlA/b06o2odX2UKGgGaAloD0MI8X9HVKjEdECUhpRSlGgVTWMCaBZHQOUKhGQuEmJ1fZQoaAZoCWgPQwhTdY9sbst0QJSGlFKUaBVNbAJoFkdA5RHXKnWJ8HV9lChoBmgJaA9DCOXUzjD11XRAlIaUUpRoFU1nAmgWR0DlGSiEgW8AdX2UKGgGaAloD0MIA5SGGoXVdECUhpRSlGgVTVkCaBZHQOUhSQgX/HZ1fZQoaAZoCWgPQwh24QfnE9J0QJSGlFKUaBVNYQJoFkdA5SfiN03fh3V9lChoBmgJaA9DCJ1/u+wXyHRAlIaUUpRoFU1fAmgWR0DlLyxkQPI5dX2UKGgGaAloD0MIqB5pcFvRdECUhpRSlGgVTWYCaBZHQOU1uK1RceN1fZQoaAZoCWgPQwj4qL9e4eN0QJSGlFKUaBVNVAJoFkdA5T0MJu/DcnV9lChoBmgJaA9DCCnsouiBD1TAlIaUUpRoFUtqaBZHQOU9zZUzbex1fZQoaAZoCWgPQwhUbw1sFdd0QJSGlFKUaBVNYAJoFkdA5UUPi3PRiXV9lChoBmgJaA9DCELMJVVb23RAlIaUUpRoFU1XAmgWR0DlS6S8DB/JdX2UKGgGaAloD0MIc9nonB/SdECUhpRSlGgVTVgCaBZHQOVS6Q+t8u11fZQoaAZoCWgPQwgFUmLXNth0QJSGlFKUaBVNYAJoFkdA5VmDGqPwNXV9lChoBmgJaA9DCKLT827s1HRAlIaUUpRoFU1bAmgWR0DlYM5JjlPrdX2UKGgGaAloD0MIlIPZBBjNdECUhpRSlGgVTWQCaBZHQOVnXH5N47l1fZQoaAZoCWgPQwibr5KP3cp0QJSGlFKUaBVNYAJoFkdA5W6rpaiblXV9lChoBmgJaA9DCORp+YFr1nRAlIaUUpRoFU1nAmgWR0DldTbyrgfmdX2UKGgGaAloD0MIo5Ol1vvcdECUhpRSlGgVTWwCaBZHQOV8hQqZtvZ1fZQoaAZoCWgPQwhkkLsI09B0QJSGlFKUaBVNXQJoFkdA5YMWOoxYaHV9lChoBmgJaA9DCBh6xOj5znRAlIaUUpRoFU1iAmgWR0DlinF82rGSdX2UKGgGaAloD0MIjWDj+rfNdECUhpRSlGgVTVMCaBZHQOWScNf3N9p1ZS4="
83
+ },
84
+ "ep_success_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
+ },
88
+ "_n_updates": 490048,
89
+ "buffer_size": 1,
90
+ "batch_size": 256,
91
+ "learning_starts": 10000,
92
+ "tau": 0.02,
93
+ "gamma": 0.98,
94
+ "gradient_steps": 64,
95
+ "optimize_memory_usage": false,
96
+ "replay_buffer_class": {
97
+ ":type:": "<class 'abc.ABCMeta'>",
98
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
99
+ "__module__": "stable_baselines3.common.buffers",
100
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
101
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f216b0e4b90>",
102
+ "add": "<function ReplayBuffer.add at 0x7f216b0e4c20>",
103
+ "sample": "<function ReplayBuffer.sample at 0x7f216ac4b7a0>",
104
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f216ac4b830>",
105
+ "__abstractmethods__": "frozenset()",
106
+ "_abc_impl": "<_abc_data object at 0x7f216b13b5d0>"
107
+ },
108
+ "replay_buffer_kwargs": {},
109
+ "train_freq": {
110
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
111
+ ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLQGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
112
+ },
113
+ "use_sde_at_warmup": false,
114
+ "target_entropy": -4.0,
115
+ "ent_coef": "auto",
116
+ "target_update_interval": 1,
117
+ "top_quantiles_to_drop_per_net": 2,
118
+ "_last_dones": {
119
+ ":type:": "<class 'numpy.ndarray'>",
120
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
121
+ },
122
+ "remove_time_limit_termination": false
123
+ }
tqc-BipedalWalker-v3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52cf453030022fa54970758c16870b3b5e11dc92142f07fadeecf879402629fb
3
+ size 1255
tqc-BipedalWalker-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:594355e97c1a3b510bfc6d88d956cc2b2214dd6d1d2678f9d56cf13887d918ee
3
+ size 2771784
tqc-BipedalWalker-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0d967b8c3cae279f44b5586c365546a35335f3198068fcab1f9e964b91862a9
3
+ size 747
tqc-BipedalWalker-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9da614673c2bc33cb9be50e4ea1bc7c0b5d3591d54ef3953b7647a098b530940
3
+ size 35331