|
|
|
|
|
|
|
"""VMamba: Visual State Space Model configuration""" |
|
|
|
from typing import Any, Dict |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class VMambaConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`VMambaModel`]. It is used to instantiate a VMamba |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the |
|
[VMamba-T](https://github.com/MzeroMiko/VMamba/) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
num_channels (`int`, *optional*, defaults to 3): |
|
Number of input channels. |
|
patch_size (`int`, *optional*, defaults to 4): |
|
The size (resolution) of each patch. |
|
embed_dim (`int`, *optional*, defaults to 96): |
|
Dimensionality of patch embedding. |
|
depths (`list(int)`, *optional*, defaults to `[2, 2, 8, 2]`): |
|
Depth of each layer in the VMamba encoder. |
|
dims (`list(int)`, *optional*, defaults to `[96, 192, 384, 768]`): |
|
Dimensionality of each layer in the VMamba encoder. |
|
drop_path_rate (`float`, *optional*, defaults to 0.2): |
|
Stochastic depth rate. |
|
num_classes (`int`, *optional*, defaults to 1000): |
|
Number of classes for classification. |
|
max_length (`int`, *optional*, defaults to 1024): |
|
Temporal dimension of the spectrograms. |
|
num_mel_bins (`int`, *optional*, defaults to 128): |
|
Frequency dimension of the spectrograms (number of Mel-frequency bins). |
|
use_checkpoint (`bool`, *optional*, defaults to `False`): |
|
Whether to use checkpointing to save memory. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import VMambaConfig, VMambaModel |
|
|
|
>>> # Initializing a VMamba tiny style configuration |
|
>>> configuration = VMambaConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the VMamba tiny style configuration |
|
>>> model = VMambaModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "vmamba" |
|
|
|
def __init__( |
|
self, |
|
num_channels: int = 3, |
|
patch_size: int = 4, |
|
embed_dim: int = 96, |
|
depths: list = [2, 2, 8, 2], |
|
dims: list =[96, 192, 384, 768], |
|
drop_path_rate: float = 0.2, |
|
num_classes: int = 1000, |
|
max_length: int = 1024, |
|
num_mel_bins: int = 128, |
|
use_checkpoint: bool = False, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.embed_dim = embed_dim |
|
self.depths = depths |
|
self.dims = dims |
|
self.drop_path_rate = drop_path_rate |
|
self.num_classes = num_classes |
|
self.max_length = max_length |
|
self.num_mel_bins = num_mel_bins |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
|
|
|
|
def _get_non_default_generation_parameters(self) -> Dict[str, Any]: |
|
return {} |
|
|
|
|
|
__all__ = ["VMambaConfig"] |
|
|