File size: 5,027 Bytes
95fd58c 1fbba67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
license: apache-2.0
---
# Magi-1: Autoregressive Video Generation Are Scalable World Models
<!-- TODO: add image -->
<div align="center" style="margin-top: 0px; margin-bottom: 0px;">
<img src=https://github.com/user-attachments/.... width="30%"/>
此处添加官方图片
</div>
-----
This repository contains the code for the Magi-1 model, pre-trained weights and inference code. You can find more information on our [project page](http://sand.ai).
## 1. Introduction
We present magi, a world model that generates videos by autoregressively predicting a sequence of video chunks, defined as fixed-length segments of consecutive frames. Trained to denoise per-chunk noise that increases monotonically over time, magi enables causal temporal modeling and naturally supports streaming generation. It achieves strong performance on image-to-video (I2V) tasks conditioned on text instructions, providing high temporal consistency and scalability, which are made possible by several algorithmic innovations and a dedicated infrastructure stack. Magi further supports controllable generation via chunk-wise prompting, enabling smooth scene transitions, long-horizon synthesis, and fine-grained text-driven control. We believe magi offers a promising direction for unifying high-fidelity video generation with flexible instruction control and real-time deployment.
## 2. Model and Checkpoints
We provide the pre-trained weights for Magi-1, including the 24B and 4.5B models, as well as the corresponding distill and distill+quant models. The model weight links are shown in the table.
| Model | Link | Recommend Machine |
| ----------------------------- | ------------------------------------------------------------ | ------------------------------- |
| Magi-1-24B | [Magi-1-24B](https://huggingface.co/sand-ai/Magi-1/tree/main/ckpt/magi/24B_base) | H100/H800 \* 8 |
| Magi-1-24B-distill | [Magi-1-24B-distill](https://huggingface.co/sand-ai/Magi-1/tree/main/ckpt/magi/24B_distill) | H100/H800 \* 8 |
| Magi-1-24B-distill+fp8_quant | [Magi-1-24B-distill+quant](https://huggingface.co/sand-ai/Magi-1/tree/main/ckpt/magi/24B_distill_quant) | H100/H800 \* 4 or RTX 4090 \* 8 |
| Magi-1-4.5B | Magi-1-4.5B (Comming Soon) | RTX 4090 \* 1 |
| Magi-1-4.5B-distill | Magi-1-4.5B-distill (Comming Soon) | RTX 4090 \* 1 |
| Magi-1-4.5B-distill+fp8_quant | Magi-1-4.5B-distill+fp8_quant (Comming Soon) | RTX 4090 \* 1 |
## 3. How to run
### 3.1 Environment preparation
We provide two ways to run Magi-1, with the Docker environment being the recommended option.
**Run with docker environment (Recommend)**
```bash
docker pull magi/magi:latest
docker run -it --gpus all --privileged --shm-size=32g --name magi --net=host --ipc=host --ulimit memlock=-1 --ulimit stack=6710886 sandai/magi:latest /bin/bash
```
**Run with source code**
```bash
# Create a new environment
conda create -n magi python==3.10.12
# Install pytorch
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia
# Install other dependencies
pip install -r requirements.txt
# Install magi-attention, new install method
pip install --no-cache-dir "https://python-artifacts.oss-cn-shanghai.aliyuncs.com/flash_attn_3-3.0.0b2-cp310-cp310-linux_x86_64.whl" --no-deps
```
### 3.2 Inference command
```bash
# Run 24B Magi-1 model
bash example/24B/run.sh
# Run 4.5B Magi-1 model
bash example/4.5B/run.sh
```
### 3.3 Useful configs
| Config | Help |
| -------------- | ------------------------------------------------------------ |
| seed | Random seed used for video generation |
| video_size_h | Height of the video |
| video_size_w | Width of the video |
| num_frames | Controls the duration of generated video |
| fps | Frames per second, 4 video frames correspond to 1 latent_frame |
| cfg_number | Base model uses cfg_number==2, distill and quant model uses cfg_number=1 |
| load | Directory containing a model checkpoint. |
| t5_pretrained | Path to load pretrained T5 model |
| vae_pretrained | Path to load pretrained VAE model |
## 4. Acknowledgements
## 5. Contact
Please feel free to cite our paper if you find our code or model useful in your research.
```
@article{magi1,
title={Magi-1: Autoregressive Video Generation Are Scalable World Models},
author={Magi-1},
journal={arXiv preprint arXiv:2504.06165},
year={2025}
(TODO: add correct citation)
}
```
If you have any questions, please feel free to raise an issue.
|