rohitp1 commited on
Commit
f189410
·
1 Parent(s): be3ea57

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - wer
6
+ model-index:
7
+ - name: libri-alpha-0.85-Temp-1-processor-change
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # libri-alpha-0.85-Temp-1-processor-change
15
+
16
+ This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 78.4467
19
+ - Wer: 0.1153
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 2e-05
39
+ - train_batch_size: 32
40
+ - eval_batch_size: 32
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 2
43
+ - total_train_batch_size: 64
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 500
47
+ - num_epochs: 30
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
53
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
54
+ | 493.9213 | 0.75 | 100 | 145.7981 | 0.1515 |
55
+ | 410.8468 | 1.49 | 200 | 119.1579 | 0.1498 |
56
+ | 368.5187 | 2.24 | 300 | 109.7572 | 0.1505 |
57
+ | 329.7762 | 2.99 | 400 | 99.2350 | 0.1439 |
58
+ | 323.7352 | 3.73 | 500 | 92.1173 | 0.1356 |
59
+ | 305.1129 | 4.48 | 600 | 89.3685 | 0.1314 |
60
+ | 294.2529 | 5.22 | 700 | 88.3937 | 0.1287 |
61
+ | 284.5355 | 5.97 | 800 | 87.0589 | 0.1292 |
62
+ | 284.2181 | 6.72 | 900 | 86.4474 | 0.1298 |
63
+ | 273.915 | 7.46 | 1000 | 84.6149 | 0.1265 |
64
+ | 267.7668 | 8.21 | 1100 | 84.1840 | 0.1264 |
65
+ | 262.1592 | 8.96 | 1200 | 83.8678 | 0.1253 |
66
+ | 262.5562 | 9.7 | 1300 | 83.2756 | 0.1207 |
67
+ | 262.9982 | 10.45 | 1400 | 81.8095 | 0.1218 |
68
+ | 256.2891 | 11.19 | 1500 | 82.1241 | 0.1204 |
69
+ | 251.4134 | 11.94 | 1600 | 80.8432 | 0.1207 |
70
+ | 250.0854 | 12.69 | 1700 | 81.1467 | 0.1203 |
71
+ | 250.0077 | 13.43 | 1800 | 80.9370 | 0.1196 |
72
+ | 239.0915 | 14.18 | 1900 | 80.5060 | 0.1201 |
73
+ | 240.9192 | 14.93 | 2000 | 80.4557 | 0.1190 |
74
+ | 241.1668 | 15.67 | 2100 | 80.6453 | 0.1203 |
75
+ | 244.9744 | 16.42 | 2200 | 80.0101 | 0.1192 |
76
+ | 232.4748 | 17.16 | 2300 | 79.4798 | 0.1170 |
77
+ | 237.3503 | 17.91 | 2400 | 79.5743 | 0.1175 |
78
+ | 237.9698 | 18.66 | 2500 | 79.3368 | 0.1178 |
79
+ | 235.8808 | 19.4 | 2600 | 79.5519 | 0.1174 |
80
+ | 230.8314 | 20.15 | 2700 | 79.0367 | 0.1166 |
81
+ | 229.5856 | 20.9 | 2800 | 79.1809 | 0.1172 |
82
+ | 233.1034 | 21.64 | 2900 | 78.9896 | 0.1167 |
83
+ | 231.6986 | 22.39 | 3000 | 78.7184 | 0.1154 |
84
+ | 222.0106 | 23.13 | 3100 | 78.7308 | 0.1160 |
85
+ | 225.1484 | 23.88 | 3200 | 78.6649 | 0.1159 |
86
+ | 232.4254 | 24.63 | 3300 | 78.5096 | 0.1154 |
87
+ | 230.9492 | 25.37 | 3400 | 78.4873 | 0.1153 |
88
+ | 228.3062 | 26.12 | 3500 | 78.5155 | 0.1147 |
89
+ | 225.5572 | 26.87 | 3600 | 78.5693 | 0.1148 |
90
+ | 227.7358 | 27.61 | 3700 | 78.5487 | 0.1149 |
91
+ | 221.2486 | 28.36 | 3800 | 78.4307 | 0.1151 |
92
+ | 231.5915 | 29.1 | 3900 | 78.4270 | 0.1153 |
93
+ | 231.7214 | 29.85 | 4000 | 78.4467 | 0.1153 |
94
+
95
+
96
+ ### Framework versions
97
+
98
+ - Transformers 4.25.1
99
+ - Pytorch 1.12.1
100
+ - Datasets 2.7.1
101
+ - Tokenizers 0.11.0