Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,102 @@
|
|
1 |
-
---
|
2 |
-
license: gpl-3.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gpl-3.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- facebook/esm2_t33_650M_UR50D
|
7 |
+
tags:
|
8 |
+
- Antifungal
|
9 |
+
- Protein
|
10 |
+
- Bioinformatics
|
11 |
+
- Machine Learning
|
12 |
+
---
|
13 |
+
|
14 |
+
# AntiFP2: Fine-tuned ESM2 Antifungal Protein Classifier
|
15 |
+
|
16 |
+
This repository contains a fine-tuned ESM2 model for classifying antifungal proteins from amino acid sequences. The model is trained to predict binary labels indicating whether a protein is antifungal or not.
|
17 |
+
|
18 |
+
## Model Description
|
19 |
+
|
20 |
+
- **Base Model:** ESM2-t36-3B-UR50D (Fine-tuned)
|
21 |
+
- **Fine-tuning Task:** Binary antifungal protein classification.
|
22 |
+
- **Architecture:** ESM2 backbone with a linear classification head.
|
23 |
+
- **Input:** Protein amino acid sequences.
|
24 |
+
- **Output:** Binary labels (0 = non-antifungal, 1 = antifungal).
|
25 |
+
|
26 |
+
## Repository Contents
|
27 |
+
|
28 |
+
- `pytorch_model.bin`: Trained model weights.
|
29 |
+
- `alphabet.bin`: ESM2 alphabet (tokenizer).
|
30 |
+
- `config.json`: Model configuration.
|
31 |
+
- `README.md`: This file.
|
32 |
+
|
33 |
+
## Usage
|
34 |
+
|
35 |
+
### Installation
|
36 |
+
|
37 |
+
Install required Python packages:
|
38 |
+
|
39 |
+
```bash
|
40 |
+
pip install torch esm biopython huggingface_hub
|
41 |
+
````
|
42 |
+
|
43 |
+
### Loading the Model from Hugging Face
|
44 |
+
|
45 |
+
```python
|
46 |
+
import torch
|
47 |
+
import torch.nn as nn
|
48 |
+
import esm
|
49 |
+
from huggingface_hub import hf_hub_download
|
50 |
+
import json
|
51 |
+
|
52 |
+
# Define the classifier architecture (must match training)
|
53 |
+
class ProteinClassifier(nn.Module):
|
54 |
+
def __init__(self, esm_model, embedding_dim, num_classes):
|
55 |
+
super(AntiFP2Classifier, self).__init__()
|
56 |
+
self.esm_model = esm_model
|
57 |
+
self.fc = nn.Linear(embedding_dim, num_classes)
|
58 |
+
def forward(self, tokens):
|
59 |
+
with torch.no_grad():
|
60 |
+
results = self.esm_model(tokens, repr_layers=[36])
|
61 |
+
embeddings = results["representations"][36].mean(1)
|
62 |
+
output = self.fc(embeddings)
|
63 |
+
return output
|
64 |
+
|
65 |
+
# Download model files from Hugging Face Hub
|
66 |
+
repo_id = "your-username/antifp2"
|
67 |
+
model_weights_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin")
|
68 |
+
alphabet_path = hf_hub_download(repo_id=repo_id, filename="alphabet.bin")
|
69 |
+
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
|
70 |
+
|
71 |
+
# Load ESM2 backbone model
|
72 |
+
esm_model, alphabet = esm.pretrained.esm2_t36_3B_UR50D()
|
73 |
+
|
74 |
+
# Load configuration
|
75 |
+
with open(config_path, 'r') as f:
|
76 |
+
config = json.load(f)
|
77 |
+
|
78 |
+
# Initialize classifier
|
79 |
+
classifier = ProteinClassifier(esm_model, embedding_dim=config['embedding_dim'], num_classes=config['num_classes'])
|
80 |
+
|
81 |
+
# Load weights
|
82 |
+
classifier.load_state_dict(torch.load(model_weights_path))
|
83 |
+
classifier.eval()
|
84 |
+
|
85 |
+
# Load alphabet tokenizer
|
86 |
+
alphabet = torch.load(alphabet_path)
|
87 |
+
batch_converter = alphabet.get_batch_converter()
|
88 |
+
|
89 |
+
# Move model to GPU if available
|
90 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
91 |
+
classifier = classifier.to(device)
|
92 |
+
```
|
93 |
+
|
94 |
+
## Input Format
|
95 |
+
|
96 |
+
Input sequences must be provided as amino acid strings using standard single-letter codes.
|
97 |
+
|
98 |
+
## Output
|
99 |
+
|
100 |
+
The model outputs logits for two classes, which can be converted to probabilities using softmax. The predicted label is antifungal (1) if the probability exceeds a threshold (e.g., 0.5).
|
101 |
+
|
102 |
+
---
|