--- license: mit tags: - reinforcement-learning - agentic-reasoning - math-reasoning - tool-use - mlx - mlx-my-repo language: - en - zh pipeline_tag: text-generation base_model: rstar2-reproduce/rStar2-Agent-14B --- # qurk41/rStar2-Agent-14B-mlx-4Bit The Model [qurk41/rStar2-Agent-14B-mlx-4Bit](https://huggingface.co/qurk41/rStar2-Agent-14B-mlx-4Bit) was converted to MLX format from [rstar2-reproduce/rStar2-Agent-14B](https://huggingface.co/rstar2-reproduce/rStar2-Agent-14B) using mlx-lm version **0.26.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("qurk41/rStar2-Agent-14B-mlx-4Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```