Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -35,8 +35,8 @@ More details on model performance across various devices, can be found
|
|
35 |
|
36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
| ---|---|---|---|---|---|---|---|
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.
|
40 |
|
41 |
|
42 |
## Installation
|
@@ -96,16 +96,16 @@ python -m qai_hub_models.models.shufflenet_v2.export
|
|
96 |
```
|
97 |
Profile Job summary of Shufflenet-v2
|
98 |
--------------------------------------------------
|
99 |
-
Device: Samsung Galaxy
|
100 |
-
Estimated Inference Time: 0.
|
101 |
-
Estimated Peak Memory Range: 0.02-
|
102 |
Compute Units: NPU (202) | Total (202)
|
103 |
|
104 |
Profile Job summary of Shufflenet-v2
|
105 |
--------------------------------------------------
|
106 |
-
Device: Samsung Galaxy
|
107 |
-
Estimated Inference Time: 0.
|
108 |
-
Estimated Peak Memory Range: 0.
|
109 |
Compute Units: NPU (157) | Total (157)
|
110 |
|
111 |
|
@@ -225,7 +225,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
225 |
## License
|
226 |
- The license for the original implementation of Shufflenet-v2 can be found
|
227 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
228 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
229 |
|
230 |
## References
|
231 |
* [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164)
|
|
|
35 |
|
36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
| ---|---|---|---|---|---|---|---|
|
38 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.919 ms | 0 - 2 MB | FP16 | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite)
|
39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.322 ms | 1 - 4 MB | FP16 | NPU | [Shufflenet-v2.so](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.so)
|
40 |
|
41 |
|
42 |
## Installation
|
|
|
96 |
```
|
97 |
Profile Job summary of Shufflenet-v2
|
98 |
--------------------------------------------------
|
99 |
+
Device: Samsung Galaxy S24 (14)
|
100 |
+
Estimated Inference Time: 0.59 ms
|
101 |
+
Estimated Peak Memory Range: 0.02-31.31 MB
|
102 |
Compute Units: NPU (202) | Total (202)
|
103 |
|
104 |
Profile Job summary of Shufflenet-v2
|
105 |
--------------------------------------------------
|
106 |
+
Device: Samsung Galaxy S24 (14)
|
107 |
+
Estimated Inference Time: 0.23 ms
|
108 |
+
Estimated Peak Memory Range: 0.01-46.20 MB
|
109 |
Compute Units: NPU (157) | Total (157)
|
110 |
|
111 |
|
|
|
225 |
## License
|
226 |
- The license for the original implementation of Shufflenet-v2 can be found
|
227 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
228 |
+
- The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
|
229 |
|
230 |
## References
|
231 |
* [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164)
|