File size: 18,236 Bytes
a65972e
 
97c8d04
a65972e
 
5550dfd
a65972e
 
 
26066d7
a65972e
 
 
 
e1337b1
a65972e
 
10dc80e
e1337b1
 
a65972e
 
 
 
 
 
 
97c8d04
a65972e
 
 
 
97c8d04
 
a65972e
97c8d04
58513b6
97c8d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65972e
db80613
 
a65972e
 
 
 
4b16d68
a65972e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730d847
58513b6
 
 
97c8d04
 
 
 
 
 
730d847
db80613
 
a65972e
 
db80613
a65972e
 
 
 
 
 
 
 
 
 
 
 
ab7970d
a65972e
 
ab7970d
a65972e
 
4b16d68
a65972e
ab7970d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65972e
 
 
 
 
 
 
 
 
 
 
 
9fa8578
 
 
71a2104
a65972e
 
 
 
 
 
 
 
 
9fa8578
 
 
 
71a2104
a65972e
 
 
 
 
 
26066d7
a65972e
 
db80613
a65972e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58513b6
a65972e
4b16d68
 
58513b6
 
 
a65972e
 
 
 
 
58513b6
 
a65972e
df9e708
a65972e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/shufflenet_v2/web-assets/model_demo.png)

# Shufflenet-v2: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone


ShufflenetV2 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of Shufflenet-v2 found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py).


This repository provides scripts to run Shufflenet-v2 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/shufflenet_v2).


### Model Details

- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
  - Model checkpoint: Imagenet
  - Input resolution: 224x224
  - Number of parameters: 1.36M
  - Model size (float): 5.25 MB
  - Model size (w8a8): 4.42 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Shufflenet-v2 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 1.627 ms | 0 - 15 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
| Shufflenet-v2 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 1.598 ms | 1 - 11 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.869 ms | 0 - 30 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
| Shufflenet-v2 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 1.303 ms | 1 - 23 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.694 ms | 0 - 27 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
| Shufflenet-v2 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 0.692 ms | 1 - 3 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.97 ms | 0 - 18 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
| Shufflenet-v2 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 0.923 ms | 1 - 15 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 1.627 ms | 0 - 15 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
| Shufflenet-v2 | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 1.598 ms | 1 - 11 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.692 ms | 0 - 26 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
| Shufflenet-v2 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 0.69 ms | 1 - 3 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.232 ms | 0 - 19 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
| Shufflenet-v2 | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 1.183 ms | 0 - 18 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.692 ms | 0 - 27 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
| Shufflenet-v2 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 0.696 ms | 1 - 3 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.97 ms | 0 - 18 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
| Shufflenet-v2 | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 0.923 ms | 1 - 15 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.697 ms | 0 - 28 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
| Shufflenet-v2 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 0.689 ms | 0 - 17 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 0.973 ms | 0 - 15 MB | NPU | [Shufflenet-v2.onnx](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.onnx) |
| Shufflenet-v2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.451 ms | 0 - 28 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
| Shufflenet-v2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 0.464 ms | 0 - 24 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.595 ms | 0 - 26 MB | NPU | [Shufflenet-v2.onnx](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.onnx) |
| Shufflenet-v2 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.444 ms | 0 - 21 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
| Shufflenet-v2 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 0.427 ms | 0 - 17 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 0.655 ms | 1 - 22 MB | NPU | [Shufflenet-v2.onnx](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.onnx) |
| Shufflenet-v2 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.823 ms | 1 - 1 MB | NPU | Use Export Script |
| Shufflenet-v2 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.026 ms | 0 - 0 MB | NPU | [Shufflenet-v2.onnx](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.onnx) |
| Shufflenet-v2 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 0.797 ms | 0 - 12 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 1.08 ms | 0 - 10 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.424 ms | 0 - 24 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 0.623 ms | 0 - 19 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.327 ms | 0 - 9 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 0.475 ms | 0 - 2 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.522 ms | 0 - 14 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 0.674 ms | 0 - 15 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 0.645 ms | 0 - 16 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 1.066 ms | 0 - 12 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 7.248 ms | 0 - 8 MB | CPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 0.797 ms | 0 - 12 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN | 1.08 ms | 0 - 10 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.325 ms | 0 - 8 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 0.473 ms | 0 - 2 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 0.647 ms | 0 - 17 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN | 0.815 ms | 0 - 18 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.322 ms | 0 - 9 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 0.469 ms | 0 - 2 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.522 ms | 0 - 14 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN | 0.674 ms | 0 - 15 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.326 ms | 0 - 9 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 0.471 ms | 0 - 9 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 0.794 ms | 0 - 8 MB | NPU | [Shufflenet-v2.onnx](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.onnx) |
| Shufflenet-v2 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.226 ms | 0 - 25 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 0.34 ms | 0 - 25 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.532 ms | 0 - 26 MB | NPU | [Shufflenet-v2.onnx](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.onnx) |
| Shufflenet-v2 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.255 ms | 0 - 19 MB | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.tflite) |
| Shufflenet-v2 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 0.316 ms | 0 - 18 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 0.597 ms | 0 - 21 MB | NPU | [Shufflenet-v2.onnx](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.onnx) |
| Shufflenet-v2 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.567 ms | 0 - 0 MB | NPU | Use Export Script |
| Shufflenet-v2 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.781 ms | 0 - 0 MB | NPU | [Shufflenet-v2.onnx](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2_w8a8.onnx) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.shufflenet_v2.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.shufflenet_v2.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.shufflenet_v2.export
```
```
Profiling Results
------------------------------------------------------------
Shufflenet-v2
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : TFLITE                               
Estimated inference time (ms)   : 1.6                                  
Estimated peak memory usage (MB): [0, 15]                              
Total # Ops                     : 159                                  
Compute Unit(s)                 : npu (159 ops) gpu (0 ops) cpu (0 ops)
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/shufflenet_v2/qai_hub_models/models/Shufflenet-v2/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.shufflenet_v2 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.shufflenet_v2.demo --on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.shufflenet_v2.demo -- --on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Shufflenet-v2's performance across various devices [here](https://aihub.qualcomm.com/models/shufflenet_v2).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Shufflenet-v2 can be found
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).