Improve language tag
Browse filesHi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.
README.md
CHANGED
@@ -1,96 +1,107 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
tags:
|
4 |
-
- text-generation-inference
|
5 |
-
- code
|
6 |
-
- fact
|
7 |
-
- math
|
8 |
-
- short-context-reasoning
|
9 |
-
license: apache-2.0
|
10 |
-
language:
|
11 |
-
-
|
12 |
-
-
|
13 |
-
|
14 |
-
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
)
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
Structured prompts result in higher factual accuracy and shorter response latency.
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- text-generation-inference
|
5 |
+
- code
|
6 |
+
- fact
|
7 |
+
- math
|
8 |
+
- short-context-reasoning
|
9 |
+
license: apache-2.0
|
10 |
+
language:
|
11 |
+
- zho
|
12 |
+
- eng
|
13 |
+
- fra
|
14 |
+
- spa
|
15 |
+
- por
|
16 |
+
- deu
|
17 |
+
- ita
|
18 |
+
- rus
|
19 |
+
- jpn
|
20 |
+
- kor
|
21 |
+
- vie
|
22 |
+
- tha
|
23 |
+
- ara
|
24 |
+
base_model:
|
25 |
+
- Qwen/Qwen2.5-0.5B-Instruct
|
26 |
+
pipeline_tag: text-generation
|
27 |
+
---
|
28 |
+

|
29 |
+
|
30 |
+
# **TESS-QwenRe-Fact-0.5B**
|
31 |
+
|
32 |
+
> **TESS-QwenRe-Fact-0.5B** is a **compact fact-checking and short reasoning model** built upon **Qwen2.5 0.5B**. Designed for rapid response, real-world fact verification, and concise logical reasoning, this lightweight model is ideal for digital assistants, quick-response tools, and misinformation detection systems in **English** and **Chinese**.
|
33 |
+
|
34 |
+
## **Key Features**
|
35 |
+
|
36 |
+
1. **Fact Verification & Correction**
|
37 |
+
Trained to analyze factual accuracy in statements and offer corrected or clarified responses, making it ideal for real-time verification tasks and misinformation mitigation.
|
38 |
+
|
39 |
+
2. **Concise Reasoning**
|
40 |
+
Specializes in **short-form reasoning**, capable of analyzing and explaining claims, decisions, or statements in just a few logical steps — perfect for Q&A bots and assistant systems.
|
41 |
+
|
42 |
+
3. **Multilingual Support (EN + ZH)**
|
43 |
+
Supports fact-checking tasks in both **English** and **Simplified Chinese**, enhancing accessibility for bilingual or regional use cases.
|
44 |
+
|
45 |
+
4. **Built on Qwen2.5 0.5B**
|
46 |
+
Combines the latest architectural improvements from **Qwen2.5** with a small parameter footprint (0.5B), optimized for **speed**, **efficiency**, and **edge-device compatibility**.
|
47 |
+
|
48 |
+
5. **Prompt-Friendly Output**
|
49 |
+
Responds well to well-structured queries, returning clean, interpretable answers — especially for true/false classification, source-based fact validation, and yes/no reasoning.
|
50 |
+
|
51 |
+
## **Quickstart with Transformers**
|
52 |
+
|
53 |
+
```python
|
54 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
55 |
+
|
56 |
+
model_name = "prithivMLmods/TESS-QwenRe-Fact-0.5B"
|
57 |
+
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(
|
59 |
+
model_name,
|
60 |
+
torch_dtype="auto",
|
61 |
+
device_map="auto"
|
62 |
+
)
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
64 |
+
|
65 |
+
prompt = "Is the capital of Australia Sydney? Explain briefly."
|
66 |
+
messages = [
|
67 |
+
{"role": "system", "content": "You are a concise and accurate fact-checking assistant."},
|
68 |
+
{"role": "user", "content": prompt}
|
69 |
+
]
|
70 |
+
text = tokenizer.apply_chat_template(
|
71 |
+
messages,
|
72 |
+
tokenize=False,
|
73 |
+
add_generation_prompt=True
|
74 |
+
)
|
75 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
76 |
+
|
77 |
+
generated_ids = model.generate(
|
78 |
+
**model_inputs,
|
79 |
+
max_new_tokens=256
|
80 |
+
)
|
81 |
+
generated_ids = [
|
82 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
83 |
+
]
|
84 |
+
|
85 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
86 |
+
```
|
87 |
+
|
88 |
+
## **Intended Use**
|
89 |
+
|
90 |
+
- **Fact-Checking Assistants**: Quickly verify factual claims in conversation or content.
|
91 |
+
- **Digital Truth Detectors**: Misinformation and rumor detection in social feeds or news summaries.
|
92 |
+
- **Micro-Reasoning Bots**: Smart agents for short-form logic and rationale generation.
|
93 |
+
- **Multilingual Knowledge Tools**: Fact reasoning in **EN/ZH**, ideal for diverse platforms.
|
94 |
+
|
95 |
+
## **Limitations**
|
96 |
+
|
97 |
+
1. **Limited Depth**
|
98 |
+
Focused on **short-form reasoning** — may not perform well on multi-step or abstract logic tasks.
|
99 |
+
|
100 |
+
2. **Compact Model Scale**
|
101 |
+
At 0.5B parameters, it prioritizes **efficiency over complexity** — best for straightforward fact-based tasks.
|
102 |
+
|
103 |
+
3. **Language & Topic Bias**
|
104 |
+
Inherits limitations and biases from its base model Qwen2.5 0.5B. Use carefully in sensitive contexts.
|
105 |
+
|
106 |
+
4. **Prompt Clarity Required**
|
107 |
Structured prompts result in higher factual accuracy and shorter response latency.
|