--- license: apache-2.0 language: - en base_model: - Qwen/Qwen3-1.7B pipeline_tag: text-generation library_name: transformers tags: - text-generation-inference - moe - moderately abliterated variant --- ![FMjPew6Vjrp4FvKe1Uz_T.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/sdq94NXg-BEF9xbxauq1W.png) # **Qwen3-1.7B-ft-bf16** > **Qwen3-1.7B-ft-bf16** is a fine-tuned, moderately abliterated variant of the Qwen3-1.7B model. Built upon the robust Qwen3 architecture, this version emphasizes **improved context awareness** and **moderate behavioral flexibility**, while maintaining high standards in reasoning, instruction-following, and multilingual performance. It is designed to perform consistently across general-purpose dialogue, technical reasoning, creative writing, and multilingual tasks. ### Key Highlights: - **Improved Context Awareness**: Retains and utilizes long-span contextual information effectively, making it suitable for long conversations, document analysis, and summarization. - **Moderate Abliteration**: Introduces controlled experimental freedoms for enhanced expressiveness and adaptability, while preserving safety and alignment. - **Dual-Mode Thinking Support**: Supports dynamic switching between deep logical reasoning and efficient casual dialogue, making it task-aware and context-adaptive. - **Multilingual Excellence**: Robust across 100+ languages, handling translation, multilingual instruction, and language-specific tasks seamlessly. - **Tool and Agent Integration**: Performs well in agent-driven scenarios and can interface with tools and APIs in both thinking and non-thinking modes. --- ## Quickstart with 🤗 Transformers ```bash pip install transformers==4.51.3 pip install huggingface_hub[hf_xet] ``` ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "prithivMLmods/Qwen3-1.7B-ft-bf16" # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # Define prompt and apply chat template prompt = "Explain why the sky appears blue during the day and red at sunset." messages = [{"role": "user", "content": prompt}] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True ) # Tokenize input model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate response generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # Optional: Separate thinking content try: index = len(output_ids) - output_ids[::-1].index(151668) # token ID for except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` --- ## Recommended Settings - **Sampling Parameters**: - Thinking Mode: `temperature=0.6`, `top_p=0.95`, `top_k=20`, `min_p=0.0` - Non-Thinking Mode: `temperature=0.7`, `top_p=0.8`, `top_k=20`, `min_p=0.0` - **Max Token Length**: - Standard Tasks: `32768` - Complex/Extended Tasks: `38912` --- ## Prompting Guidelines - **Math Problems**: `"Please reason step by step, and put your final answer within \boxed{}."` - **MCQs**: Format: `{"answer": "C"}` - **Dialogues**: Include only final responses in history; omit internal thinking logs for efficiency.