--- license: apache-2.0 datasets: - linxy/LaTeX_OCR - prithivMLmods/Img2Text-Plaintext-Retrieval - prithivMLmods/Img2Text-Algorithm-Retrieval - unsloth/LaTeX_OCR - mychen76/invoices-and-receipts_ocr_v1 language: - en base_model: - Qwen/Qwen2-VL-2B-Instruct pipeline_tag: image-text-to-text library_name: transformers tags: - OCR - KIE - Key Information Extraction - Messy Handwriting Recognition - text-generation-inference - VLM - Callisto - OCR#3 - RAG - 2B --- # **Callisto-OCR3-2B-Instruct [ VL / OCR ]** ![Callisto.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/8S9-RGoCAfSqzMHvuAWm-.png) > [!Note] > The **Callisto-OCR3-2B-Instruct** model is a fine-tuned version of *Qwen2-VL-2B-Instruct*, specifically optimized for *messy handwriting recognition*, *Optical Character Recognition (OCR)*, *English language understanding*, and *math problem solving with LaTeX formatting*. This model integrates a conversational approach with visual and textual understanding to handle multi-modal tasks effectively. [![Open Demo in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://huggingface.co/prithivMLmods/Callisto-OCR3-2B-Instruct/blob/main/Callisto-OCR3-2B-Instruct-Demo/Callisto_OCR3_2B_Instruct.ipynb) #### Key Enhancements: * **SoTA understanding of images of various resolution & ratio**: Callisto-OCR3 achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. * **Enhanced Handwriting OCR**: Optimized for recognizing and interpreting **messy handwriting** with high accuracy, making it ideal for digitizing handwritten documents and notes. * **Understanding videos of 20min+**: Callisto-OCR3 can process long videos, enabling high-quality video-based question answering, transcription, and content generation. * **Agent that can operate your mobiles, robots, etc.**: With advanced reasoning and decision-making, Callisto-OCR3 can be integrated with mobile phones, robots, and other devices to perform automated tasks based on visual and textual input. * **Multilingual Support**: Besides English and Chinese, Callisto-OCR3 supports text recognition inside images in multiple languages, including European languages, Japanese, Korean, Arabic, and Vietnamese. ### How to Use ```python from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info # Load the model on the available device(s) model = Qwen2VLForConditionalGeneration.from_pretrained( "prithivMLmods/Callisto-OCR3-2B-Instruct", torch_dtype="auto", device_map="auto" ) # Enable flash_attention_2 for better acceleration and memory optimization # model = Qwen2VLForConditionalGeneration.from_pretrained( # "prithivMLmods/Callisto-OCR3-2B-Instruct", # torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", # device_map="auto", # ) # Default processor processor = AutoProcessor.from_pretrained("prithivMLmods/Callisto-OCR3-2B-Instruct") # Customize visual token range for speed-memory balance # min_pixels = 256*28*28 # max_pixels = 1280*28*28 # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Recognize the handwriting in this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generate the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ### Buffering Output ```python buffer = "" for new_text in streamer: buffer += new_text # Remove <|im_end|> or similar tokens from the output buffer = buffer.replace("<|im_end|>", "") yield buffer ``` ### **Key Features** 1. **Advanced Handwriting OCR:** - Excels at recognizing and transcribing **messy and cursive handwriting** into digital text with high accuracy. 2. **Vision-Language Integration:** - Combines **image understanding** with **natural language processing** to convert images into text. 3. **Optical Character Recognition (OCR):** - Extracts and processes textual information from images with precision. 4. **Math and LaTeX Support:** - Solves math problems and outputs equations in **LaTeX format**. 5. **Conversational Capabilities:** - Designed to handle **multi-turn interactions**, providing context-aware responses. 6. **Image-Text-to-Text Generation:** - Inputs can include **images, text, or a combination**, and the model generates descriptive or problem-solving text.