Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
The Super-Resolution Generative Adversarial Network (SRGAN) is a seminal work that is capable of generating realistic textures during single image super-resolution. However, the hallucinated details are often accompanied with unpleasant artifacts. To further enhance the visual quality, we thoroughly study three key components of SRGAN - network architecture, adversarial loss and perceptual loss, and improve each of them to derive an Enhanced SRGAN (ESRGAN). In particular, we introduce the Residual-in-Residual Dense Block (RRDB) without batch normalization as the basic network building unit. Moreover, we borrow the idea from relativistic GAN to let the discriminator predict relative realness instead of the absolute value. Finally, we improve the perceptual loss by using the features before activation, which could provide stronger supervision for brightness consistency and texture recovery. Benefiting from these improvements, the proposed ESRGAN achieves consistently better visual quality with more realistic and natural textures than SRGAN and won the first place in the PIRM2018-SR Challenge. The code is available at https://github.com/xinntao/ESRGAN .
DISGAN: Wavelet-informed Discriminator Guides GAN to MRI Super-resolution with Noise Cleaning
MRI super-resolution (SR) and denoising tasks are fundamental challenges in the field of deep learning, which have traditionally been treated as distinct tasks with separate paired training data. In this paper, we propose an innovative method that addresses both tasks simultaneously using a single deep learning model, eliminating the need for explicitly paired noisy and clean images during training. Our proposed model is primarily trained for SR, but also exhibits remarkable noise-cleaning capabilities in the super-resolved images. Instead of conventional approaches that introduce frequency-related operations into the generative process, our novel approach involves the use of a GAN model guided by a frequency-informed discriminator. To achieve this, we harness the power of the 3D Discrete Wavelet Transform (DWT) operation as a frequency constraint within the GAN framework for the SR task on magnetic resonance imaging (MRI) data. Specifically, our contributions include: 1) a 3D generator based on residual-in-residual connected blocks; 2) the integration of the 3D DWT with 1times 1 convolution into a DWT+conv unit within a 3D Unet for the discriminator; 3) the use of the trained model for high-quality image SR, accompanied by an intrinsic denoising process. We dub the model "Denoising Induced Super-resolution GAN (DISGAN)" due to its dual effects of SR image generation and simultaneous denoising. Departing from the traditional approach of training SR and denoising tasks as separate models, our proposed DISGAN is trained only on the SR task, but also achieves exceptional performance in denoising. The model is trained on 3D MRI data from dozens of subjects from the Human Connectome Project (HCP) and further evaluated on previously unseen MRI data from subjects with brain tumours and epilepsy to assess its denoising and SR performance.
Identity Mappings in Deep Residual Networks
Deep residual networks have emerged as a family of extremely deep architectures showing compelling accuracy and nice convergence behaviors. In this paper, we analyze the propagation formulations behind the residual building blocks, which suggest that the forward and backward signals can be directly propagated from one block to any other block, when using identity mappings as the skip connections and after-addition activation. A series of ablation experiments support the importance of these identity mappings. This motivates us to propose a new residual unit, which makes training easier and improves generalization. We report improved results using a 1001-layer ResNet on CIFAR-10 (4.62% error) and CIFAR-100, and a 200-layer ResNet on ImageNet. Code is available at: https://github.com/KaimingHe/resnet-1k-layers
Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit
The cost of hyperparameter tuning in deep learning has been rising with model sizes, prompting practitioners to find new tuning methods using a proxy of smaller networks. One such proposal uses muP parameterized networks, where the optimal hyperparameters for small width networks transfer to networks with arbitrarily large width. However, in this scheme, hyperparameters do not transfer across depths. As a remedy, we study residual networks with a residual branch scale of 1/text{depth} in combination with the muP parameterization. We provide experiments demonstrating that residual architectures including convolutional ResNets and Vision Transformers trained with this parameterization exhibit transfer of optimal hyperparameters across width and depth on CIFAR-10 and ImageNet. Furthermore, our empirical findings are supported and motivated by theory. Using recent developments in the dynamical mean field theory (DMFT) description of neural network learning dynamics, we show that this parameterization of ResNets admits a well-defined feature learning joint infinite-width and infinite-depth limit and show convergence of finite-size network dynamics towards this limit.
Width and Depth Limits Commute in Residual Networks
We show that taking the width and depth to infinity in a deep neural network with skip connections, when branches are scaled by 1/depth (the only nontrivial scaling), result in the same covariance structure no matter how that limit is taken. This explains why the standard infinite-width-then-depth approach provides practical insights even for networks with depth of the same order as width. We also demonstrate that the pre-activations, in this case, have Gaussian distributions which has direct applications in Bayesian deep learning. We conduct extensive simulations that show an excellent match with our theoretical findings.
Residual Connections Harm Generative Representation Learning
We show that introducing a weighting factor to reduce the influence of identity shortcuts in residual networks significantly enhances semantic feature learning in generative representation learning frameworks, such as masked autoencoders (MAEs) and diffusion models. Our modification notably improves feature quality, raising ImageNet-1K K-Nearest Neighbor accuracy from 27.4% to 63.9% and linear probing accuracy from 67.8% to 72.7% for MAEs with a ViT-B/16 backbone, while also enhancing generation quality in diffusion models. This significant gap suggests that, while residual connection structure serves an essential role in facilitating gradient propagation, it may have a harmful side effect of reducing capacity for abstract learning by virtue of injecting an echo of shallower representations into deeper layers. We ameliorate this downside via a fixed formula for monotonically decreasing the contribution of identity connections as layer depth increases. Our design promotes the gradual development of feature abstractions, without impacting network trainability. Analyzing the representations learned by our modified residual networks, we find correlation between low effective feature rank and downstream task performance.
Adaptive Rational Activations to Boost Deep Reinforcement Learning
Latest insights from biology show that intelligence not only emerges from the connections between neurons but that individual neurons shoulder more computational responsibility than previously anticipated. This perspective should be critical in the context of constantly changing distinct reinforcement learning environments, yet current approaches still primarily employ static activation functions. In this work, we motivate why rationals are suitable for adaptable activation functions and why their inclusion into neural networks is crucial. Inspired by recurrence in residual networks, we derive a condition under which rational units are closed under residual connections and formulate a naturally regularised version: the recurrent-rational. We demonstrate that equipping popular algorithms with (recurrent-)rational activations leads to consistent improvements on Atari games, especially turning simple DQN into a solid approach, competitive to DDQN and Rainbow.
TransNeXt: Robust Foveal Visual Perception for Vision Transformers
Due to the depth degradation effect in residual connections, many efficient Vision Transformers models that rely on stacking layers for information exchange often fail to form sufficient information mixing, leading to unnatural visual perception. To address this issue, in this paper, we propose Aggregated Attention, a biomimetic design-based token mixer that simulates biological foveal vision and continuous eye movement while enabling each token on the feature map to have a global perception. Furthermore, we incorporate learnable tokens that interact with conventional queries and keys, which further diversifies the generation of affinity matrices beyond merely relying on the similarity between queries and keys. Our approach does not rely on stacking for information exchange, thus effectively avoiding depth degradation and achieving natural visual perception. Additionally, we propose Convolutional GLU, a channel mixer that bridges the gap between GLU and SE mechanism, which empowers each token to have channel attention based on its nearest neighbor image features, enhancing local modeling capability and model robustness. We combine aggregated attention and convolutional GLU to create a new visual backbone called TransNeXt. Extensive experiments demonstrate that our TransNeXt achieves state-of-the-art performance across multiple model sizes. At a resolution of 224^2, TransNeXt-Tiny attains an ImageNet accuracy of 84.0%, surpassing ConvNeXt-B with 69% fewer parameters. Our TransNeXt-Base achieves an ImageNet accuracy of 86.2% and an ImageNet-A accuracy of 61.6% at a resolution of 384^2, a COCO object detection mAP of 57.1, and an ADE20K semantic segmentation mIoU of 54.7.
A Novel Momentum-Based Deep Learning Techniques for Medical Image Classification and Segmentation
Accurately segmenting different organs from medical images is a critical prerequisite for computer-assisted diagnosis and intervention planning. This study proposes a deep learning-based approach for segmenting various organs from CT and MRI scans and classifying diseases. Our study introduces a novel technique integrating momentum within residual blocks for enhanced training dynamics in medical image analysis. We applied our method in two distinct tasks: segmenting liver, lung, & colon data and classifying abdominal pelvic CT and MRI scans. The proposed approach has shown promising results, outperforming state-of-the-art methods on publicly available benchmarking datasets. For instance, in the lung segmentation dataset, our approach yielded significant enhancements over the TransNetR model, including a 5.72% increase in dice score, a 5.04% improvement in mean Intersection over Union (mIoU), an 8.02% improvement in recall, and a 4.42% improvement in precision. Hence, incorporating momentum led to state-of-the-art performance in both segmentation and classification tasks, representing a significant advancement in the field of medical imaging.
Hyper-Connections
We present hyper-connections, a simple yet effective method that can serve as an alternative to residual connections. This approach specifically addresses common drawbacks observed in residual connection variants, such as the seesaw effect between gradient vanishing and representation collapse. Theoretically, hyper-connections allow the network to adjust the strength of connections between features at different depths and dynamically rearrange layers. We conduct experiments focusing on the pre-training of large language models, including dense and sparse models, where hyper-connections show significant performance improvements over residual connections. Additional experiments conducted on vision tasks also demonstrate similar improvements. We anticipate that this method will be broadly applicable and beneficial across a wide range of AI problems.
Steering Llama 2 via Contrastive Activation Addition
We introduce Contrastive Activation Addition (CAA), an innovative method for steering language models by modifying activations during their forward passes. CAA computes ``steering vectors'' by averaging the difference in residual stream activations between pairs of positive and negative examples of a particular behavior such as factual versus hallucinatory responses. During inference, these steering vectors are added at all token positions after the user's prompt with either a positive or negative coefficient, allowing precise control over the degree of the targeted behavior. We evaluate CAA's effectiveness on Llama 2 Chat using both multiple-choice behavioral question datasets and open-ended generation tasks. We demonstrate that CAA significantly alters model behavior, outperforms traditional methods like finetuning and few-shot prompting, and minimally reduces capabilities. Moreover, by employing various activation space interpretation methods, we gain deeper insights into CAA's mechanisms. CAA both accurately steers model outputs and also sheds light on how high-level concepts are represented in Large Language Models (LLMs).
TextureDiffusion: Target Prompt Disentangled Editing for Various Texture Transfer
Recently, text-guided image editing has achieved significant success. However, existing methods can only apply simple textures like wood or gold when changing the texture of an object. Complex textures such as cloud or fire pose a challenge. This limitation stems from that the target prompt needs to contain both the input image content and <texture>, restricting the texture representation. In this paper, we propose TextureDiffusion, a tuning-free image editing method applied to various texture transfer. Initially, the target prompt is directly set to "<texture>", making the texture disentangled from the input image content to enhance texture representation. Subsequently, query features in self-attention and features in residual blocks are utilized to preserve the structure of the input image. Finally, to maintain the background, we introduce an edit localization technique which blends the self-attention results and the intermediate latents. Comprehensive experiments demonstrate that TextureDiffusion can harmoniously transfer various textures with excellent structure and background preservation.
Cosmological Distance Measurement of 12 Nearby Supernovae IIP with ROTSE-IIIB
We present cosmological analysis of 12 nearby (z<0.06) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20\% increase in the detection efficiency and significant reduction in residual RMS scatter of the SN lightcurves when compared to the previous pipeline performance. We use the published optical spectra and broadband photometry of well studied SNe IIP to establish temporal models for ejecta velocity and photospheric temperature evolution for our SNe IIP population. This study yields measurements that are competitive to other methods even when the data are limited to a single epoch during the photospheric phase of SNe IIP. Using the fully reduced ROTSE photometry and optical spectra, we apply these models to the respective photometric epochs for each SN in the ROTSE IIP sample. This facilitates the use of the Expanding Photosphere Method (EPM) to obtain distance estimates to their respective host galaxies. We then perform cosmological parameter fitting using these EPM distances from which we measure the Hubble constant to be 72.9^{+5.7}_{-4.3}~{rm kms^{-1}~Mpc^{-1}}, which is consistent with the standard Lambda CDM model values derived using other independent techniques.
MAC-VO: Metrics-aware Covariance for Learning-based Stereo Visual Odometry
We propose the MAC-VO, a novel learning-based stereo VO that leverages the learned metrics-aware matching uncertainty for dual purposes: selecting keypoint and weighing the residual in pose graph optimization. Compared to traditional geometric methods prioritizing texture-affluent features like edges, our keypoint selector employs the learned uncertainty to filter out the low-quality features based on global inconsistency. In contrast to the learning-based algorithms that model the scale-agnostic diagonal weight matrix for covariance, we design a metrics-aware covariance model to capture the spatial error during keypoint registration and the correlations between different axes. Integrating this covariance model into pose graph optimization enhances the robustness and reliability of pose estimation, particularly in challenging environments with varying illumination, feature density, and motion patterns. On public benchmark datasets, MAC-VO outperforms existing VO algorithms and even some SLAM algorithms in challenging environments. The covariance map also provides valuable information about the reliability of the estimated poses, which can benefit decision-making for autonomous systems.
A Closer Look at Spatiotemporal Convolutions for Action Recognition
In this paper we discuss several forms of spatiotemporal convolutions for video analysis and study their effects on action recognition. Our motivation stems from the observation that 2D CNNs applied to individual frames of the video have remained solid performers in action recognition. In this work we empirically demonstrate the accuracy advantages of 3D CNNs over 2D CNNs within the framework of residual learning. Furthermore, we show that factorizing the 3D convolutional filters into separate spatial and temporal components yields significantly advantages in accuracy. Our empirical study leads to the design of a new spatiotemporal convolutional block "R(2+1)D" which gives rise to CNNs that achieve results comparable or superior to the state-of-the-art on Sports-1M, Kinetics, UCF101 and HMDB51.
MUDDFormer: Breaking Residual Bottlenecks in Transformers via Multiway Dynamic Dense Connections
We propose MUltiway Dynamic Dense (MUDD) connections, a simple yet effective method to address the limitations of residual connections and enhance cross-layer information flow in Transformers. Unlike existing dense connection approaches with static and shared connection weights, MUDD generates connection weights dynamically depending on hidden states at each sequence position and for each decoupled input stream (the query, key, value or residual) of a Transformer block. MUDD connections can be seamlessly integrated into any Transformer architecture to create MUDDFormer. Extensive experiments show that MUDDFormer significantly outperforms Transformers across various model architectures and scales in language modeling, achieving the performance of Transformers trained with 1.8X-2.4X compute. Notably, MUDDPythia-2.8B matches Pythia-6.9B in pretraining ppl and downstream tasks and even rivals Pythia-12B in five-shot settings, while adding only 0.23% parameters and 0.4% computation. Code in JAX and PyTorch and pre-trained models are available at https://github.com/Caiyun-AI/MUDDFormer .
ResLoRA: Identity Residual Mapping in Low-Rank Adaption
As one of the most popular parameter-efficient fine-tuning (PEFT) methods, low-rank adaptation (LoRA) is commonly applied to fine-tune large language models (LLMs). However, updating the weights of LoRA blocks effectively and expeditiously is challenging due to the long calculation path in the original model. To address this, we propose ResLoRA, an improved framework of LoRA. By adding residual paths during training and using merging approaches to eliminate these extra paths during inference, our method can achieve better results in fewer training steps without any extra trainable parameters or inference cost compared to LoRA. The experiments on NLG, NLU, and text-to-image tasks demonstrate the effectiveness of our method. To the best of our knowledge, ResLoRA is the first work that combines the residual path with LoRA. The code of our method is available at https://github.com/microsoft/LMOps/tree/main/reslora .
On Residual CNN in text-dependent speaker verification task
Deep learning approaches are still not very common in the speaker verification field. We investigate the possibility of using deep residual convolutional neural network with spectrograms as an input features in the text-dependent speaker verification task. Despite the fact that we were not able to surpass the baseline system in quality, we achieved a quite good results for such a new approach getting an 5.23% ERR on the RSR2015 evaluation part. Fusion of the baseline and proposed systems outperformed the best individual system by 18% relatively.
Verifying Robust Unlearning: Probing Residual Knowledge in Unlearned Models
Machine Unlearning (MUL) is crucial for privacy protection and content regulation, yet recent studies reveal that traces of forgotten information persist in unlearned models, enabling adversaries to resurface removed knowledge. Existing verification methods only confirm whether unlearning was executed, failing to detect such residual information leaks. To address this, we introduce the concept of Robust Unlearning, ensuring models are indistinguishable from retraining and resistant to adversarial recovery. To empirically evaluate whether unlearning techniques meet this security standard, we propose the Unlearning Mapping Attack (UMA), a post-unlearning verification framework that actively probes models for forgotten traces using adversarial queries. Extensive experiments on discriminative and generative tasks show that existing unlearning techniques remain vulnerable, even when passing existing verification metrics. By establishing UMA as a practical verification tool, this study sets a new standard for assessing and enhancing machine unlearning security.
Residual Energy-Based Models for Text Generation
Text generation is ubiquitous in many NLP tasks, from summarization, to dialogue and machine translation. The dominant parametric approach is based on locally normalized models which predict one word at a time. While these work remarkably well, they are plagued by exposure bias due to the greedy nature of the generation process. In this work, we investigate un-normalized energy-based models (EBMs) which operate not at the token but at the sequence level. In order to make training tractable, we first work in the residual of a pretrained locally normalized language model and second we train using noise contrastive estimation. Furthermore, since the EBM works at the sequence level, we can leverage pretrained bi-directional contextual representations, such as BERT and RoBERTa. Our experiments on two large language modeling datasets show that residual EBMs yield lower perplexity compared to locally normalized baselines. Moreover, generation via importance sampling is very efficient and of higher quality than the baseline models according to human evaluation.
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Very deep convolutional networks have been central to the largest advances in image recognition performance in recent years. One example is the Inception architecture that has been shown to achieve very good performance at relatively low computational cost. Recently, the introduction of residual connections in conjunction with a more traditional architecture has yielded state-of-the-art performance in the 2015 ILSVRC challenge; its performance was similar to the latest generation Inception-v3 network. This raises the question of whether there are any benefit in combining the Inception architecture with residual connections. Here we give clear empirical evidence that training with residual connections accelerates the training of Inception networks significantly. There is also some evidence of residual Inception networks outperforming similarly expensive Inception networks without residual connections by a thin margin. We also present several new streamlined architectures for both residual and non-residual Inception networks. These variations improve the single-frame recognition performance on the ILSVRC 2012 classification task significantly. We further demonstrate how proper activation scaling stabilizes the training of very wide residual Inception networks. With an ensemble of three residual and one Inception-v4, we achieve 3.08 percent top-5 error on the test set of the ImageNet classification (CLS) challenge
DeepCrossAttention: Supercharging Transformer Residual Connections
Transformer networks have achieved remarkable success across diverse domains, leveraging a variety of architectural innovations, including residual connections. However, traditional residual connections, which simply sum the outputs of previous layers, can dilute crucial information. This work introduces DeepCrossAttention (DCA), an approach that enhances residual learning in transformers. DCA employs learnable, input-dependent weights to dynamically combine layer outputs, enabling the model to selectively focus on the most relevant information in any of the previous layers. Furthermore, DCA incorporates depth-wise cross-attention, allowing for richer interactions between layers at different depths. Our language modeling experiments show that DCA achieves improved perplexity for a given training time. Moreover, DCA obtains the same model quality up to 3x faster while adding a negligible number of parameters. Theoretical analysis confirms that DCA provides an improved trade-off between accuracy and model size when the ratio of collective layer ranks to the ambient dimension falls below a critical threshold.
Revisiting Residual Connections: Orthogonal Updates for Stable and Efficient Deep Networks
Residual connections are pivotal for deep neural networks, enabling greater depth by mitigating vanishing gradients. However, in standard residual updates, the module's output is directly added to the input stream. This can lead to updates that predominantly reinforce or modulate the existing stream direction, potentially underutilizing the module's capacity for learning entirely novel features. In this work, we introduce Orthogonal Residual Update: we decompose the module's output relative to the input stream and add only the component orthogonal to this stream. This design aims to guide modules to contribute primarily new representational directions, fostering richer feature learning while promoting more efficient training. We demonstrate that our orthogonal update strategy improves generalization accuracy and training stability across diverse architectures (ResNetV2, Vision Transformers) and datasets (CIFARs, TinyImageNet, ImageNet-1k), achieving, for instance, a +4.3\%p top-1 accuracy gain for ViT-B on ImageNet-1k.
Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks
Convolutional Neural Networks (CNN) have been regarded as a powerful class of models for image recognition problems. Nevertheless, it is not trivial when utilizing a CNN for learning spatio-temporal video representation. A few studies have shown that performing 3D convolutions is a rewarding approach to capture both spatial and temporal dimensions in videos. However, the development of a very deep 3D CNN from scratch results in expensive computational cost and memory demand. A valid question is why not recycle off-the-shelf 2D networks for a 3D CNN. In this paper, we devise multiple variants of bottleneck building blocks in a residual learning framework by simulating 3times3times3 convolutions with 1times3times3 convolutional filters on spatial domain (equivalent to 2D CNN) plus 3times1times1 convolutions to construct temporal connections on adjacent feature maps in time. Furthermore, we propose a new architecture, named Pseudo-3D Residual Net (P3D ResNet), that exploits all the variants of blocks but composes each in different placement of ResNet, following the philosophy that enhancing structural diversity with going deep could improve the power of neural networks. Our P3D ResNet achieves clear improvements on Sports-1M video classification dataset against 3D CNN and frame-based 2D CNN by 5.3% and 1.8%, respectively. We further examine the generalization performance of video representation produced by our pre-trained P3D ResNet on five different benchmarks and three different tasks, demonstrating superior performances over several state-of-the-art techniques.
Enhanced Deep Residual Networks for Single Image Super-Resolution
Recent research on super-resolution has progressed with the development of deep convolutional neural networks (DCNN). In particular, residual learning techniques exhibit improved performance. In this paper, we develop an enhanced deep super-resolution network (EDSR) with performance exceeding those of current state-of-the-art SR methods. The significant performance improvement of our model is due to optimization by removing unnecessary modules in conventional residual networks. The performance is further improved by expanding the model size while we stabilize the training procedure. We also propose a new multi-scale deep super-resolution system (MDSR) and training method, which can reconstruct high-resolution images of different upscaling factors in a single model. The proposed methods show superior performance over the state-of-the-art methods on benchmark datasets and prove its excellence by winning the NTIRE2017 Super-Resolution Challenge.
Analysing the Residual Stream of Language Models Under Knowledge Conflicts
Large language models (LLMs) can store a significant amount of factual knowledge in their parameters. However, their parametric knowledge may conflict with the information provided in the context. Such conflicts can lead to undesirable model behaviour, such as reliance on outdated or incorrect information. In this work, we investigate whether LLMs can identify knowledge conflicts and whether it is possible to know which source of knowledge the model will rely on by analysing the residual stream of the LLM. Through probing tasks, we find that LLMs can internally register the signal of knowledge conflict in the residual stream, which can be accurately detected by probing the intermediate model activations. This allows us to detect conflicts within the residual stream before generating the answers without modifying the input or model parameters. Moreover, we find that the residual stream shows significantly different patterns when the model relies on contextual knowledge versus parametric knowledge to resolve conflicts. This pattern can be employed to estimate the behaviour of LLMs when conflict happens and prevent unexpected answers before producing the answers. Our analysis offers insights into how LLMs internally manage knowledge conflicts and provides a foundation for developing methods to control the knowledge selection processes.
Residual Stream Analysis with Multi-Layer SAEs
Sparse autoencoders (SAEs) are a promising approach to interpreting the internal representations of transformer language models. However, standard SAEs are trained separately on each transformer layer, making it difficult to use them to study how information flows across layers. To solve this problem, we introduce the multi-layer SAE (MLSAE): a single SAE trained on the residual stream activation vectors from every transformer layer simultaneously. The residual stream is usually understood as preserving information across layers, so we expected to, and did, find individual SAE features that are active at multiple layers. Interestingly, while a single SAE feature is active at different layers for different prompts, for a single prompt, we find that a single feature is far more likely to be active at a single layer. For larger underlying models, we find that the cosine similarities between adjacent layers in the residual stream are higher, so we expect more features to be active at multiple layers. These results show that MLSAEs are a promising method to study information flow in transformers. We release our code to train and analyze MLSAEs at https://github.com/tim-lawson/mlsae.
RAVE: Residual Vector Embedding for CLIP-Guided Backlit Image Enhancement
In this paper we propose a novel modification of Contrastive Language-Image Pre-Training (CLIP) guidance for the task of unsupervised backlit image enhancement. Our work builds on the state-of-the-art CLIP-LIT approach, which learns a prompt pair by constraining the text-image similarity between a prompt (negative/positive sample) and a corresponding image (backlit image/well-lit image) in the CLIP embedding space. Learned prompts then guide an image enhancement network. Based on the CLIP-LIT framework, we propose two novel methods for CLIP guidance. First, we show that instead of tuning prompts in the space of text embeddings, it is possible to directly tune their embeddings in the latent space without any loss in quality. This accelerates training and potentially enables the use of additional encoders that do not have a text encoder. Second, we propose a novel approach that does not require any prompt tuning. Instead, based on CLIP embeddings of backlit and well-lit images from training data, we compute the residual vector in the embedding space as a simple difference between the mean embeddings of the well-lit and backlit images. This vector then guides the enhancement network during training, pushing a backlit image towards the space of well-lit images. This approach further dramatically reduces training time, stabilizes training and produces high quality enhanced images without artifacts, both in supervised and unsupervised training regimes. Additionally, we show that residual vectors can be interpreted, revealing biases in training data, and thereby enabling potential bias correction.
Predicting 3D Rigid Body Dynamics with Deep Residual Network
This study investigates the application of deep residual networks for predicting the dynamics of interacting three-dimensional rigid bodies. We present a framework combining a 3D physics simulator implemented in C++ with a deep learning model constructed using PyTorch. The simulator generates training data encompassing linear and angular motion, elastic collisions, fluid friction, gravitational effects, and damping. Our deep residual network, consisting of an input layer, multiple residual blocks, and an output layer, is designed to handle the complexities of 3D dynamics. We evaluate the network's performance using a datasetof 10,000 simulated scenarios, each involving 3-5 interacting rigid bodies. The model achieves a mean squared error of 0.015 for position predictions and 0.022 for orientation predictions, representing a 25% improvement over baseline methods. Our results demonstrate the network's ability to capture intricate physical interactions, with particular success in predicting elastic collisions and rotational dynamics. This work significantly contributes to physics-informed machine learning by showcasing the immense potential of deep residual networks in modeling complex 3D physical systems. We discuss our approach's limitations and propose future directions for improving generalization to more diverse object shapes and materials.
The Reasoning-Memorization Interplay in Language Models Is Mediated by a Single Direction
Large language models (LLMs) excel on a variety of reasoning benchmarks, but previous studies suggest they sometimes struggle to generalize to unseen questions, potentially due to over-reliance on memorized training examples. However, the precise conditions under which LLMs switch between reasoning and memorization during text generation remain unclear. In this work, we provide a mechanistic understanding of LLMs' reasoning-memorization dynamics by identifying a set of linear features in the model's residual stream that govern the balance between genuine reasoning and memory recall. These features not only distinguish reasoning tasks from memory-intensive ones but can also be manipulated to causally influence model performance on reasoning tasks. Additionally, we show that intervening in these reasoning features helps the model more accurately activate the most relevant problem-solving capabilities during answer generation. Our findings offer new insights into the underlying mechanisms of reasoning and memory in LLMs and pave the way for the development of more robust and interpretable generative AI systems.
StyleRes: Transforming the Residuals for Real Image Editing with StyleGAN
We present a novel image inversion framework and a training pipeline to achieve high-fidelity image inversion with high-quality attribute editing. Inverting real images into StyleGAN's latent space is an extensively studied problem, yet the trade-off between the image reconstruction fidelity and image editing quality remains an open challenge. The low-rate latent spaces are limited in their expressiveness power for high-fidelity reconstruction. On the other hand, high-rate latent spaces result in degradation in editing quality. In this work, to achieve high-fidelity inversion, we learn residual features in higher latent codes that lower latent codes were not able to encode. This enables preserving image details in reconstruction. To achieve high-quality editing, we learn how to transform the residual features for adapting to manipulations in latent codes. We train the framework to extract residual features and transform them via a novel architecture pipeline and cycle consistency losses. We run extensive experiments and compare our method with state-of-the-art inversion methods. Qualitative metrics and visual comparisons show significant improvements. Code: https://github.com/hamzapehlivan/StyleRes
Refusal in Language Models Is Mediated by a Single Direction
Conversational large language models are fine-tuned for both instruction-following and safety, resulting in models that obey benign requests but refuse harmful ones. While this refusal behavior is widespread across chat models, its underlying mechanisms remain poorly understood. In this work, we show that refusal is mediated by a one-dimensional subspace, across 13 popular open-source chat models up to 72B parameters in size. Specifically, for each model, we find a single direction such that erasing this direction from the model's residual stream activations prevents it from refusing harmful instructions, while adding this direction elicits refusal on even harmless instructions. Leveraging this insight, we propose a novel white-box jailbreak method that surgically disables refusal with minimal effect on other capabilities. Finally, we mechanistically analyze how adversarial suffixes suppress propagation of the refusal-mediating direction. Our findings underscore the brittleness of current safety fine-tuning methods. More broadly, our work showcases how an understanding of model internals can be leveraged to develop practical methods for controlling model behavior.
Tensor Programs VI: Feature Learning in Infinite-Depth Neural Networks
By classifying infinite-width neural networks and identifying the *optimal* limit, Tensor Programs IV and V demonstrated a universal way, called muP, for *widthwise hyperparameter transfer*, i.e., predicting optimal hyperparameters of wide neural networks from narrow ones. Here we investigate the analogous classification for *depthwise parametrizations* of deep residual networks (resnets). We classify depthwise parametrizations of block multiplier and learning rate by their infinite-width-then-depth limits. In resnets where each block has only one layer, we identify a unique optimal parametrization, called Depth-muP that extends muP and show empirically it admits depthwise hyperparameter transfer. We identify *feature diversity* as a crucial factor in deep networks, and Depth-muP can be characterized as maximizing both feature learning and feature diversity. Exploiting this, we find that absolute value, among all homogeneous nonlinearities, maximizes feature diversity and indeed empirically leads to significantly better performance. However, if each block is deeper (such as modern transformers), then we find fundamental limitations in all possible infinite-depth limits of such parametrizations, which we illustrate both theoretically and empirically on simple networks as well as Megatron transformer trained on Common Crawl.
M2R2: Mixture of Multi-Rate Residuals for Efficient Transformer Inference
Residual transformations enhance the representational depth and expressive power of large language models (LLMs). However, applying static residual transformations across all tokens in auto-regressive generation leads to a suboptimal trade-off between inference efficiency and generation fidelity. Existing methods, including Early Exiting, Skip Decoding, and Mixture-of-Depth address this by modulating the residual transformation based on token-level complexity. Nevertheless, these approaches predominantly consider the distance traversed by tokens through the model layers, neglecting the underlying velocity of residual evolution. We introduce Mixture of Multi-rate Residuals (M2R2), a framework that dynamically modulates residual velocity to improve early alignment, enhancing inference efficiency. Evaluations on reasoning oriented tasks such as Koala, Self-Instruct, WizardLM, and MT-Bench show M2R2 surpasses state-of-the-art distance-based strategies, balancing generation quality and speedup. In self-speculative decoding setup, M2R2 achieves up to 2.8x speedups on MT-Bench, outperforming methods like 2-model speculative decoding, Medusa, LookAhead Decoding, and DEED. In Mixture-of-Experts (MoE) architectures, integrating early residual alignment with ahead-of-time expert loading into high-bandwidth memory (HBM) accelerates decoding, reduces expert-switching bottlenecks, and achieves a 2.9x speedup, making it highly effective in resource-constrained environments.
ReDeEP: Detecting Hallucination in Retrieval-Augmented Generation via Mechanistic Interpretability
Retrieval-Augmented Generation (RAG) models are designed to incorporate external knowledge, reducing hallucinations caused by insufficient parametric (internal) knowledge. However, even with accurate and relevant retrieved content, RAG models can still produce hallucinations by generating outputs that conflict with the retrieved information. Detecting such hallucinations requires disentangling how Large Language Models (LLMs) utilize external and parametric knowledge. Current detection methods often focus on one of these mechanisms or without decoupling their intertwined effects, making accurate detection difficult. In this paper, we investigate the internal mechanisms behind hallucinations in RAG scenarios. We discover hallucinations occur when the Knowledge FFNs in LLMs overemphasize parametric knowledge in the residual stream, while Copying Heads fail to effectively retain or integrate external knowledge from retrieved content. Based on these findings, we propose ReDeEP, a novel method that detects hallucinations by decoupling LLM's utilization of external context and parametric knowledge. Our experiments show that ReDeEP significantly improves RAG hallucination detection accuracy. Additionally, we introduce AARF, which mitigates hallucinations by modulating the contributions of Knowledge FFNs and Copying Heads.
Uncovering Uncertainty in Transformer Inference
We explore the Iterative Inference Hypothesis (IIH) within the context of transformer-based language models, aiming to understand how a model's latent representations are progressively refined and whether observable differences are present between correct and incorrect generations. Our findings provide empirical support for the IIH, showing that the nth token embedding in the residual stream follows a trajectory of decreasing loss. Additionally, we observe that the rate at which residual embeddings converge to a stable output representation reflects uncertainty in the token generation process. Finally, we introduce a method utilizing cross-entropy to detect this uncertainty and demonstrate its potential to distinguish between correct and incorrect token generations on a dataset of idioms.
Navigating Efficiency in MobileViT through Gaussian Process on Global Architecture Factors
Numerous techniques have been meticulously designed to achieve optimal architectures for convolutional neural networks (CNNs), yet a comparable focus on vision transformers (ViTs) has been somewhat lacking. Despite the remarkable success of ViTs in various vision tasks, their heavyweight nature presents challenges of computational costs. In this paper, we leverage the Gaussian process to systematically explore the nonlinear and uncertain relationship between performance and global architecture factors of MobileViT, such as resolution, width, and depth including the depth of in-verted residual blocks and the depth of ViT blocks, and joint factors including resolution-depth and resolution-width. We present design principles twisting magic 4D cube of the global architecture factors that minimize model sizes and computational costs with higher model accuracy. We introduce a formula for downsizing architectures by iteratively deriving smaller MobileViT V2, all while adhering to a specified constraint of multiply-accumulate operations (MACs). Experiment results show that our formula significantly outperforms CNNs and mobile ViTs across diversified datasets
Interpreting Key Mechanisms of Factual Recall in Transformer-Based Language Models
In this paper, we delve into several mechanisms employed by Transformer-based language models (LLMs) for factual recall tasks. We outline a pipeline consisting of three major steps: (1) Given a prompt ``The capital of France is,'' task-specific attention heads extract the topic token, such as ``France,'' from the context and pass it to subsequent MLPs. (2) As attention heads' outputs are aggregated with equal weight and added to the residual stream, the subsequent MLP acts as an ``activation,'' which either erases or amplifies the information originating from individual heads. As a result, the topic token ``France'' stands out in the residual stream. (3) A deep MLP takes ``France'' and generates a component that redirects the residual stream towards the direction of the correct answer, i.e., ``Paris.'' This procedure is akin to applying an implicit function such as ``get\_capital(X),'' and the argument X is the topic token information passed by attention heads. To achieve the above quantitative and qualitative analysis for MLPs, we proposed a novel analytic method aimed at decomposing the outputs of the MLP into components understandable by humans. Additionally, we observed a universal anti-overconfidence mechanism in the final layer of models, which suppresses correct predictions. We mitigate this suppression by leveraging our interpretation to improve factual recall confidence. The above interpretations are evaluated across diverse tasks spanning various domains of factual knowledge, using various language models from the GPT-2 families, 1.3B OPT, up to 7B Llama-2, and in both zero- and few-shot setups.
MultiPruner: Balanced Structure Removal in Foundation Models
Recently, state-of-the-art approaches for pruning large pre-trained models (LPMs) have demonstrated that the training-free removal of non-critical residual blocks in Transformers is viable for reducing model size, achieving results that outperform previous training-free pruning approaches. Motivated by these findings, we extend BlockPruner (Zhong et al., 2024) and propose MultiPruner, a pruning approach that surpasses recent training-free pruning methods by adopting a multidimensional, iterative, fine-grained pruning strategy. In MultiPruner, multidimensional pruning reinstates the structural balance in block-pruned models by sequentially compressing along three dimensions: i) residual blocks, ii) channels of multilayer perceptrons (MLP), and iii) attention heads. This solution enhances zero-shot accuracy on downstream tasks compared to other techniques while improving model compression ratios, producing compressed models with fewer computing and memory requirements. Extensive experiments demonstrate the advantages of the proposed method across various large pre-trained models. The code and pruning configurations are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.
Decoding specialised feature neurons in LLMs with the final projection layer
Large Language Models (LLMs) typically have billions of parameters and are thus often difficult to interpret in their operation. Such black-box models can pose a significant risk to safety when trusted to make important decisions. The lack of interpretability of LLMs is more related to their sheer size, rather than the complexity of their individual components. The TARS method for knowledge removal (Davies et al 2024) provides strong evidence for the hypothesis that that linear layer weights which act directly on the residual stream may have high correlation with different concepts encoded in the residual stream. Building upon this, we attempt to decode neuron weights directly into token probabilities through the final projection layer of the model (the LM-head). Firstly, we show that with Llama 3.1 8B we can utilise the LM-head to decode specialised feature neurons that respond strongly to certain concepts, with examples such as "dog" and "California". This is then confirmed by demonstrating that these neurons can be clamped to affect the probability of the concept in the output. This extends to the fine-tuned assistant Llama 3.1 8B instruct model, where we find that over 75% of neurons in the up-projection layers have the same top associated token compared to the pretrained model. Finally, we demonstrate that clamping the "dog" neuron leads the instruct model to always discuss dogs when asked about its favourite animal. Through our method, it is possible to map the entirety of Llama 3.1 8B's up-projection neurons in less than 15 minutes with no parallelization.
Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks
Extent of resection after surgery is one of the main prognostic factors for patients diagnosed with glioblastoma. To achieve this, accurate segmentation and classification of residual tumor from post-operative MR images is essential. The current standard method for estimating it is subject to high inter- and intra-rater variability, and an automated method for segmentation of residual tumor in early post-operative MRI could lead to a more accurate estimation of extent of resection. In this study, two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task. The models were extensively validated on a multicenter dataset with nearly 1000 patients, from 12 hospitals in Europe and the United States. The best performance achieved was a 61\% Dice score, and the best classification performance was about 80\% balanced accuracy, with a demonstrated ability to generalize across hospitals. In addition, the segmentation performance of the best models was on par with human expert raters. The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.
Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models
In Transformer language models, activation vectors transform from current token embeddings to next token predictions as they pass through the model. To isolate a minimal form of this transformation, we identify language model subnetworks that make bigram predictions, naive next token predictions based only on the current token. We find that bigram subnetworks can be found in fully trained language models up to 1B parameters, and these subnetworks are critical for model performance even when they consist of less than 0.2% of model parameters. Bigram subnetworks are concentrated in the first Transformer MLP layer, and they overlap significantly with subnetworks trained to optimally prune a given model. Mechanistically, the bigram subnetworks often recreate a pattern from the full models where the first layer induces a sharp change that aligns activations with next token predictions rather than current token representations. Our results demonstrate that bigram subnetworks comprise a minimal subset of parameters that are both necessary and sufficient for basic next token predictions in language models, and they help drive the transformation from current to next token activations in the residual stream. These subnetworks can lay a foundation for studying language model circuits by building up from a minimal circuit rather than the traditional approach of ablating circuits from a full model.
BitStack: Fine-Grained Size Control for Compressed Large Language Models in Variable Memory Environments
Large language models (LLMs) have revolutionized numerous applications, yet their deployment remains challenged by memory constraints on local devices. While scaling laws have enhanced LLM capabilities, the primary bottleneck has shifted from capability to availability, emphasizing the need for efficient memory management. Traditional compression methods, such as quantization, often require predefined compression ratios and separate compression processes for each setting, complicating deployment in variable memory environments. In this paper, we introduce BitStack, a novel, training-free weight compression approach that enables megabyte-level trade-offs between memory usage and model performance. By leveraging weight decomposition, BitStack can dynamically adjust the model size with minimal transmission between running memory and storage devices. Our approach iteratively decomposes weight matrices while considering the significance of each parameter, resulting in an approximately 1-bit per parameter residual block in each decomposition iteration. These blocks are sorted and stacked in storage as basic transmission units, with different quantities loaded based on current memory availability. Extensive experiments across a wide range of tasks demonstrate that, despite offering fine-grained size control, BitStack consistently matches or surpasses strong quantization baselines, particularly at extreme compression ratios. To the best of our knowledge, this is the first decomposition-based method that effectively bridges the gap to practical compression techniques like quantization. Code is available at https://github.com/xinghaow99/BitStack.
Meta-learning framework with applications to zero-shot time-series forecasting
Can meta-learning discover generic ways of processing time series (TS) from a diverse dataset so as to greatly improve generalization on new TS coming from different datasets? This work provides positive evidence to this using a broad meta-learning framework which we show subsumes many existing meta-learning algorithms. Our theoretical analysis suggests that residual connections act as a meta-learning adaptation mechanism, generating a subset of task-specific parameters based on a given TS input, thus gradually expanding the expressive power of the architecture on-the-fly. The same mechanism is shown via linearization analysis to have the interpretation of a sequential update of the final linear layer. Our empirical results on a wide range of data emphasize the importance of the identified meta-learning mechanisms for successful zero-shot univariate forecasting, suggesting that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining, resulting in performance that is at least as good as that of state-of-practice univariate forecasting models.
SpeedySpeech: Efficient Neural Speech Synthesis
While recent neural sequence-to-sequence models have greatly improved the quality of speech synthesis, there has not been a system capable of fast training, fast inference and high-quality audio synthesis at the same time. We propose a student-teacher network capable of high-quality faster-than-real-time spectrogram synthesis, with low requirements on computational resources and fast training time. We show that self-attention layers are not necessary for generation of high quality audio. We utilize simple convolutional blocks with residual connections in both student and teacher networks and use only a single attention layer in the teacher model. Coupled with a MelGAN vocoder, our model's voice quality was rated significantly higher than Tacotron 2. Our model can be efficiently trained on a single GPU and can run in real time even on a CPU. We provide both our source code and audio samples in our GitHub repository.
DeAL: Decoding-time Alignment for Large Language Models
Large Language Models (LLMs) are nowadays expected to generate content aligned with human preferences. Current work focuses on alignment at model training time, through techniques such as Reinforcement Learning with Human Feedback (RLHF). However, it is unclear if such methods are an effective choice to teach alignment objectives to the model. First, the inability to incorporate multiple, custom rewards and reliance on a model developer's view of universal and static principles are key limitations. Second, the residual gaps in model training and the reliability of such approaches are also questionable (e.g. susceptibility to jail-breaking even after safety training). To address these, we propose DeAL, a framework that allows the user to customize reward functions and enables Decoding-time Alignment of LLMs (DeAL). At its core, we view decoding as a heuristic-guided search process and facilitate the use of a wide variety of alignment objectives. Our experiments with programmatic constraints such as keyword and length constraints (studied widely in the pre-LLM era) and abstract objectives such as harmlessness and helpfulness (proposed in the post-LLM era) show that we can DeAL with fine-grained trade-offs, improve adherence to alignment objectives, and address residual gaps in LLMs. Lastly, while DeAL can be effectively paired with RLHF and prompting techniques, its generality makes decoding slower, an optimization we leave for future work.
BranchNorm: Robustly Scaling Extremely Deep Transformers
Recently, DeepNorm scales Transformers into extremely deep (i.e., 1000 layers) and reveals the promising potential of deep scaling. To stabilize the training of deep models, DeepNorm (Wang et al., 2022) attempts to constrain the model update to a constant value. Although applying such a constraint can benefit the early stage of model training, it may lead to undertrained models during the whole training procedure. In this paper, we propose BranchNorm, which dynamically rescales the non-residual branch of Transformer in accordance with the training period. BranchNorm not only theoretically stabilizes the training with smooth gradient norms at the early stage, but also encourages better convergence in the subsequent training stage. Experiment results on multiple translation tasks demonstrate that BranchNorm achieves a better trade-off between training stability and converge performance.
Physics-Informed Diffusion Models
Generative models such as denoising diffusion models are quickly advancing their ability to approximate highly complex data distributions. They are also increasingly leveraged in scientific machine learning, where samples from the implied data distribution are expected to adhere to specific governing equations. We present a framework that unifies generative modeling and partial differential equation fulfillment by introducing a first-principle-based loss term that enforces generated samples to fulfill the underlying physical constraints. Our approach reduces the residual error by up to two orders of magnitude compared to previous work in a fluid flow case study and outperforms task-specific frameworks in relevant metrics for structural topology optimization. We also present numerical evidence that our extended training objective acts as a natural regularization mechanism against overfitting. Our framework is simple to implement and versatile in its applicability for imposing equality and inequality constraints as well as auxiliary optimization objectives.
On the Efficiency of Convolutional Neural Networks
Since the breakthrough performance of AlexNet in 2012, convolutional neural networks (convnets) have grown into extremely powerful vision models. Deep learning researchers have used convnets to perform vision tasks with accuracy that was unachievable a decade ago. Confronted with the immense computation that convnets use, deep learning researchers also became interested in efficiency. However, the engineers who deployed efficient convnets soon realized that they were slower than the previous generation, despite using fewer operations. Many reverted to older models that ran faster. Hence researchers switched the objective of their search from arithmetic complexity to latency and produced a new wave of models that performed better. Paradoxically, these models also used more operations. Skepticism grew among researchers and engineers alike about the relevance of arithmetic complexity. Contrary to the prevailing view that latency and arithmetic complexity are irreconcilable, a simple formula relates both through computational efficiency. This insight enabled us to co-optimize the separate factors that determine latency. We observed that the degenerate conv2d layers that produce the best accuracy--complexity trade-off also use significant memory resources and have low computational efficiency. We devised block fusion algorithms to implement all the layers of a residual block in a single kernel, thereby creating temporal locality, avoiding communication, and reducing workspace size. Our ConvFirst model with block-fusion kernels has less arithmetic complexity and greater computational efficiency than baseline models and kernels, and ran approximately four times as fast as ConvNeXt. We also created novel tools, including efficiency gap plots and waterline analysis. Our unified approach to convnet efficiency envisions a new era of models and kernels that achieve greater accuracy at lower cost.
Memory Attention Networks for Skeleton-based Action Recognition
Skeleton-based action recognition task is entangled with complex spatio-temporal variations of skeleton joints, and remains challenging for Recurrent Neural Networks (RNNs). In this work, we propose a temporal-then-spatial recalibration scheme to alleviate such complex variations, resulting in an end-to-end Memory Attention Networks (MANs) which consist of a Temporal Attention Recalibration Module (TARM) and a Spatio-Temporal Convolution Module (STCM). Specifically, the TARM is deployed in a residual learning module that employs a novel attention learning network to recalibrate the temporal attention of frames in a skeleton sequence. The STCM treats the attention calibrated skeleton joint sequences as images and leverages the Convolution Neural Networks (CNNs) to further model the spatial and temporal information of skeleton data. These two modules (TARM and STCM) seamlessly form a single network architecture that can be trained in an end-to-end fashion. MANs significantly boost the performance of skeleton-based action recognition and achieve the best results on four challenging benchmark datasets: NTU RGB+D, HDM05, SYSU-3D and UT-Kinect.
Ablation is Not Enough to Emulate DPO: How Neuron Dynamics Drive Toxicity Reduction
Safety fine-tuning algorithms are commonly used to fine-tune language models to reduce harmful outputs, but the exact internal mechanisms of how those models achieve this remain unclear. In studying direct preference optimisation (DPO) for toxicity reduction, current explanations claim that DPO works by dampening the most toxic MLP neurons to learn an offset to avert toxic regions in the residual stream. However, by ablating the most toxic neurons and applying activation patching, we find this explanation incomplete. By projecting neuron activation changes onto a toxicity probe, we find that only 31.8\% of toxicity reduction comes from dampened toxic neurons. Instead, DPO reduces toxicity by accumulating effects across multiple neuron groups, both reducing writing in the toxic direction and promoting anti-toxicity in the residual stream. Moreover, DPO gives noisy adjustments to neuron activations, with many neurons actually increasing toxicity. This indicates that DPO is a balancing process between opposing neuron effects to achieve toxicity reduction.
Energy-Based Diffusion Language Models for Text Generation
Despite remarkable progress in autoregressive language models, alternative generative paradigms beyond left-to-right generation are still being actively explored. Discrete diffusion models, with the capacity for parallel generation, have recently emerged as a promising alternative. Unfortunately, these models still underperform the autoregressive counterparts, with the performance gap increasing when reducing the number of sampling steps. Our analysis reveals that this degradation is a consequence of an imperfect approximation used by diffusion models. In this work, we propose Energy-based Diffusion Language Model (EDLM), an energy-based model operating at the full sequence level for each diffusion step, introduced to improve the underlying approximation used by diffusion models. More specifically, we introduce an EBM in a residual form, and show that its parameters can be obtained by leveraging a pretrained autoregressive model or by finetuning a bidirectional transformer via noise contrastive estimation. We also propose an efficient generation algorithm via parallel important sampling. Comprehensive experiments on language modeling benchmarks show that our model can consistently outperform state-of-the-art diffusion models by a significant margin, and approaches autoregressive models' perplexity. We further show that, without any generation performance drop, our framework offers a 1.3times sampling speedup over existing diffusion models.
LOST: Low-rank and Sparse Pre-training for Large Language Models
While large language models (LLMs) have achieved remarkable performance across a wide range of tasks, their massive scale incurs prohibitive computational and memory costs for pre-training from scratch. Recent studies have investigated the use of low-rank parameterization as a means of reducing model size and training cost. In this context, sparsity is often employed as a complementary technique to recover important information lost in low-rank compression by capturing salient features in the residual space. However, existing approaches typically combine low-rank and sparse components in a simplistic or ad hoc manner, often resulting in undesirable performance degradation compared to full-rank training. In this paper, we propose LOw-rank and Sparse pre-Training (LOST) for LLMs, a novel method that ingeniously integrates low-rank and sparse structures to enable effective training of LLMs from scratch under strict efficiency constraints. LOST applies singular value decomposition to weight matrices, preserving the dominant low-rank components, while allocating the remaining singular values to construct channel-wise sparse components to complement the expressiveness of low-rank training. We evaluate LOST on LLM pretraining ranging from 60M to 7B parameters. Our experiments show that LOST achieves competitive or superior performance compared to full-rank models, while significantly reducing both memory and compute overhead. Moreover, Code is available at https://github.com/JiaxiLi1/LOST-Low-rank-and-Sparse-Training-for-Large-Language-Models{LOST Repo}
How can representation dimension dominate structurally pruned LLMs?
Pruning assumes a subnetwork exists in the original deep neural network, which can achieve comparative model performance with less computation than the original. However, it is unclear how the model performance varies with the different subnetwork extractions. In this paper, we choose the representation dimension (or embedding dimension, model dimension, the dimension of the residual stream in the relevant literature) as the entry point to this issue. We investigate the linear transformations in the LLM transformer blocks and consider a specific structured pruning approach, SliceGPT, to extract the subnetworks of different representation dimensions. We mechanistically analyse the activation flow during the model forward passes, and find the representation dimension dominates the linear transformations, model predictions, and, finally, the model performance. Explicit analytical relations are given to calculate the pruned model performance (perplexity and accuracy) without actual evaluation, and are empirically validated with Llama-3-8B-Instruct and Phi-3-mini-4k-Instruct.
Scaling strategies for on-device low-complexity source separation with Conv-Tasnet
Recently, several very effective neural approaches for single-channel speech separation have been presented in the literature. However, due to the size and complexity of these models, their use on low-resource devices, e.g. for hearing aids, and earphones, is still a challenge and established solutions are not available yet. Although approaches based on either pruning or compressing neural models have been proposed, the design of a model architecture suitable for a certain application domain often requires heuristic procedures not easily portable to different low-resource platforms. Given the modular nature of the well-known Conv-Tasnet speech separation architecture, in this paper we consider three parameters that directly control the overall size of the model, namely: the number of residual blocks, the number of repetitions of the separation blocks and the number of channels in the depth-wise convolutions, and experimentally evaluate how they affect the speech separation performance. In particular, experiments carried out on the Libri2Mix show that the number of dilated 1D-Conv blocks is the most critical parameter and that the usage of extra-dilation in the residual blocks allows reducing the performance drop.
Parameter-Efficient Transfer Learning of Audio Spectrogram Transformers
The common modus operandi of fine-tuning large pre-trained Transformer models entails the adaptation of all their parameters (i.e., full fine-tuning). While achieving striking results on multiple tasks, this approach becomes unfeasible as the model size and the number of downstream tasks increase. In natural language processing and computer vision, parameter-efficient approaches like prompt-tuning and adapters have emerged as solid alternatives by fine-tuning only a small number of extra parameters, without sacrificing performance accuracy. Specifically, adapters, due to their flexibility, have recently garnered significant attention, leading to several variants. For audio classification tasks, the Audio Spectrogram Transformer model shows impressive results. However, surprisingly, how to efficiently adapt it to several downstream tasks has not been tackled before. In this paper, we bridge this gap and present a detailed investigation of common parameter-efficient methods, revealing that adapters consistently outperform the other methods across four benchmarks. This trend is also confirmed in few-shot learning settings and when the total number of trainable parameters increases, demonstrating adapters superior scalability. We finally study the best adapter configuration, as well as the role of residual connections in the learning process. Our code is available at: https://github.com/umbertocappellazzo/PETL AST.
DeepNet: Scaling Transformers to 1,000 Layers
In this paper, we propose a simple yet effective method to stabilize extremely deep Transformers. Specifically, we introduce a new normalization function (DeepNorm) to modify the residual connection in Transformer, accompanying with theoretically derived initialization. In-depth theoretical analysis shows that model updates can be bounded in a stable way. The proposed method combines the best of two worlds, i.e., good performance of Post-LN and stable training of Pre-LN, making DeepNorm a preferred alternative. We successfully scale Transformers up to 1,000 layers (i.e., 2,500 attention and feed-forward network sublayers) without difficulty, which is one order of magnitude deeper than previous deep Transformers. Remarkably, on a multilingual benchmark with 7,482 translation directions, our 200-layer model with 3.2B parameters significantly outperforms the 48-layer state-of-the-art model with 12B parameters by 5 BLEU points, which indicates a promising scaling direction.
FreeEdit: Mask-free Reference-based Image Editing with Multi-modal Instruction
Introducing user-specified visual concepts in image editing is highly practical as these concepts convey the user's intent more precisely than text-based descriptions. We propose FreeEdit, a novel approach for achieving such reference-based image editing, which can accurately reproduce the visual concept from the reference image based on user-friendly language instructions. Our approach leverages the multi-modal instruction encoder to encode language instructions to guide the editing process. This implicit way of locating the editing area eliminates the need for manual editing masks. To enhance the reconstruction of reference details, we introduce the Decoupled Residual ReferAttention (DRRA) module. This module is designed to integrate fine-grained reference features extracted by a detail extractor into the image editing process in a residual way without interfering with the original self-attention. Given that existing datasets are unsuitable for reference-based image editing tasks, particularly due to the difficulty in constructing image triplets that include a reference image, we curate a high-quality dataset, FreeBench, using a newly developed twice-repainting scheme. FreeBench comprises the images before and after editing, detailed editing instructions, as well as a reference image that maintains the identity of the edited object, encompassing tasks such as object addition, replacement, and deletion. By conducting phased training on FreeBench followed by quality tuning, FreeEdit achieves high-quality zero-shot editing through convenient language instructions. We conduct extensive experiments to evaluate the effectiveness of FreeEdit across multiple task types, demonstrating its superiority over existing methods. The code will be available at: https://freeedit.github.io/.
Extending nnU-Net is all you need
Semantic segmentation is one of the most popular research areas in medical image computing. Perhaps surprisingly, despite its conceptualization dating back to 2018, nnU-Net continues to provide competitive out-of-the-box solutions for a broad variety of segmentation problems and is regularly used as a development framework for challenge-winning algorithms. Here we use nnU-Net to participate in the AMOS2022 challenge, which comes with a unique set of tasks: not only is the dataset one of the largest ever created and boasts 15 target structures, but the competition also requires submitted solutions to handle both MRI and CT scans. Through careful modification of nnU-net's hyperparameters, the addition of residual connections in the encoder and the design of a custom postprocessing strategy, we were able to substantially improve upon the nnU-Net baseline. Our final ensemble achieves Dice scores of 90.13 for Task 1 (CT) and 89.06 for Task 2 (CT+MRI) in a 5-fold cross-validation on the provided training cases.
Frac-Connections: Fractional Extension of Hyper-Connections
Residual connections are central to modern deep learning architectures, enabling the training of very deep networks by mitigating gradient vanishing. Hyper-Connections recently generalized residual connections by introducing multiple connection strengths at different depths, thereby addressing the seesaw effect between gradient vanishing and representation collapse. However, Hyper-Connections increase memory access costs by expanding the width of hidden states. In this paper, we propose Frac-Connections, a novel approach that divides hidden states into multiple parts rather than expanding their width. Frac-Connections retain partial benefits of Hyper-Connections while reducing memory consumption. To validate their effectiveness, we conduct large-scale experiments on language tasks, with the largest being a 7B MoE model trained on up to 3T tokens, demonstrating that Frac-Connections significantly outperform residual connections.
DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs
This paper revives Densely Connected Convolutional Networks (DenseNets) and reveals the underrated effectiveness over predominant ResNet-style architectures. We believe DenseNets' potential was overlooked due to untouched training methods and traditional design elements not fully revealing their capabilities. Our pilot study shows dense connections through concatenation are strong, demonstrating that DenseNets can be revitalized to compete with modern architectures. We methodically refine suboptimal components - architectural adjustments, block redesign, and improved training recipes towards widening DenseNets and boosting memory efficiency while keeping concatenation shortcuts. Our models, employing simple architectural elements, ultimately surpass Swin Transformer, ConvNeXt, and DeiT-III - key architectures in the residual learning lineage. Furthermore, our models exhibit near state-of-the-art performance on ImageNet-1K, competing with the very recent models and downstream tasks, ADE20k semantic segmentation, and COCO object detection/instance segmentation. Finally, we provide empirical analyses that uncover the merits of the concatenation over additive shortcuts, steering a renewed preference towards DenseNet-style designs. Our code is available at https://github.com/naver-ai/rdnet.
Misaligned Roles, Misplaced Images: Structural Input Perturbations Expose Multimodal Alignment Blind Spots
Multimodal Language Models (MMLMs) typically undergo post-training alignment to prevent harmful content generation. However, these alignment stages focus primarily on the assistant role, leaving the user role unaligned, and stick to a fixed input prompt structure of special tokens, leaving the model vulnerable when inputs deviate from these expectations. We introduce Role-Modality Attacks (RMA), a novel class of adversarial attacks that exploit role confusion between the user and assistant and alter the position of the image token to elicit harmful outputs. Unlike existing attacks that modify query content, RMAs manipulate the input structure without altering the query itself. We systematically evaluate these attacks across multiple Vision Language Models (VLMs) on eight distinct settings, showing that they can be composed to create stronger adversarial prompts, as also evidenced by their increased projection in the negative refusal direction in the residual stream, a property observed in prior successful attacks. Finally, for mitigation, we propose an adversarial training approach that makes the model robust against input prompt perturbations. By training the model on a range of harmful and benign prompts all perturbed with different RMA settings, it loses its sensitivity to Role Confusion and Modality Manipulation attacks and is trained to only pay attention to the content of the query in the input prompt structure, effectively reducing Attack Success Rate (ASR) while preserving the model's general utility.
Scalable Forward-Forward Algorithm
We propose a scalable Forward-Forward (FF) algorithm that eliminates the need for backpropagation by training each layer separately. Unlike backpropagation, FF avoids backward gradients and can be more modular and memory efficient, making it appealing for large networks. We extend FF to modern convolutional architectures, such as MobileNetV3 and ResNet18, by introducing a new way to compute losses for convolutional layers. Experiments show that our method achieves performance comparable to standard backpropagation. Furthermore, when we divide the network into blocks, such as the residual blocks in ResNet, and apply backpropagation only within each block, but not across blocks, our hybrid design tends to outperform backpropagation baselines while maintaining a similar training speed. Finally, we present experiments on small datasets and transfer learning that confirm the adaptability of our method.
Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse Problems
Krylov subspace, which is generated by multiplying a given vector by the matrix of a linear transformation and its successive powers, has been extensively studied in classical optimization literature to design algorithms that converge quickly for large linear inverse problems. For example, the conjugate gradient method (CG), one of the most popular Krylov subspace methods, is based on the idea of minimizing the residual error in the Krylov subspace. However, with the recent advancement of high-performance diffusion solvers for inverse problems, it is not clear how classical wisdom can be synergistically combined with modern diffusion models. In this study, we propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods. Specifically, we prove that if the tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG initialized with the denoised data ensures the data consistency update to remain in the tangent space. This negates the need to compute the manifold-constrained gradient (MCG), leading to a more efficient diffusion sampling method. Our method is applicable regardless of the parametrization and setting (i.e., VE, VP). Notably, we achieve state-of-the-art reconstruction quality on challenging real-world medical inverse imaging problems, including multi-coil MRI reconstruction and 3D CT reconstruction. Moreover, our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method. Code is available at https://github.com/HJ-harry/DDS
Transfer training from smaller language model
Large language models have led to state-of-the-art accuracies across a range of tasks. However,training large language model needs massive computing resource, as more and more open source pre-training models are available, it is worthy to study how to take full advantage of available model. We find a method to save training time and resource cost by changing the small well-trained model to large model. We initialize a larger target model from a smaller source model by copy weight values from source model and padding with zeros or small initialization values on it to make the source and target model have approximate outputs, which is valid due to block matrix multiplication and residual connection in transformer structure. We test the target model on several data sets and find it is still comparable with the source model. When we continue training the target model, the training loss can start from a smaller value.
The Gauss-Markov Adjunction: Categorical Semantics of Residuals in Supervised Learning
Enhancing the intelligibility and interpretability of machine learning is a crucial task in responding to the demand for Explicability as an AI principle, and in promoting the better social implementation of AI. The aim of our research is to contribute to this improvement by reformulating machine learning models through the lens of category theory, thereby developing a semantic framework for structuring and understanding AI systems. Our categorical modeling in this paper clarifies and formalizes the structural interplay between residuals and parameters in supervised learning. The present paper focuses on the multiple linear regression model, which represents the most basic form of supervised learning. By defining two concrete categories corresponding to parameters and data, along with an adjoint pair of functors between them, we introduce our categorical formulation of supervised learning. We show that the essential structure of this framework is captured by what we call the Gauss-Markov Adjunction. Within this setting, the dual flow of information can be explicitly described as a correspondence between variations in parameters and residuals. The ordinary least squares estimator for the parameters and the minimum residual are related via the preservation of limits by the right adjoint functor. Furthermore, we position this formulation as an instance of extended denotational semantics for supervised learning, and propose applying a semantic perspective developed in theoretical computer science as a formal foundation for Explicability in AI.
Hashing Neural Video Decomposition with Multiplicative Residuals in Space-Time
We present a video decomposition method that facilitates layer-based editing of videos with spatiotemporally varying lighting and motion effects. Our neural model decomposes an input video into multiple layered representations, each comprising a 2D texture map, a mask for the original video, and a multiplicative residual characterizing the spatiotemporal variations in lighting conditions. A single edit on the texture maps can be propagated to the corresponding locations in the entire video frames while preserving other contents' consistencies. Our method efficiently learns the layer-based neural representations of a 1080p video in 25s per frame via coordinate hashing and allows real-time rendering of the edited result at 71 fps on a single GPU. Qualitatively, we run our method on various videos to show its effectiveness in generating high-quality editing effects. Quantitatively, we propose to adopt feature-tracking evaluation metrics for objectively assessing the consistency of video editing. Project page: https://lightbulb12294.github.io/hashing-nvd/
Deep Residual Echo State Networks: exploring residual orthogonal connections in untrained Recurrent Neural Networks
Echo State Networks (ESNs) are a particular type of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) framework, popular for their fast and efficient learning. However, traditional ESNs often struggle with long-term information processing. In this paper, we introduce a novel class of deep untrained RNNs based on temporal residual connections, called Deep Residual Echo State Networks (DeepResESNs). We show that leveraging a hierarchy of untrained residual recurrent layers significantly boosts memory capacity and long-term temporal modeling. For the temporal residual connections, we consider different orthogonal configurations, including randomly generated and fixed-structure configurations, and we study their effect on network dynamics. A thorough mathematical analysis outlines necessary and sufficient conditions to ensure stable dynamics within DeepResESN. Our experiments on a variety of time series tasks showcase the advantages of the proposed approach over traditional shallow and deep RC.
FlexVAR: Flexible Visual Autoregressive Modeling without Residual Prediction
This work challenges the residual prediction paradigm in visual autoregressive modeling and presents FlexVAR, a new Flexible Visual AutoRegressive image generation paradigm. FlexVAR facilitates autoregressive learning with ground-truth prediction, enabling each step to independently produce plausible images. This simple, intuitive approach swiftly learns visual distributions and makes the generation process more flexible and adaptable. Trained solely on low-resolution images (leq 256px), FlexVAR can: (1) Generate images of various resolutions and aspect ratios, even exceeding the resolution of the training images. (2) Support various image-to-image tasks, including image refinement, in/out-painting, and image expansion. (3) Adapt to various autoregressive steps, allowing for faster inference with fewer steps or enhancing image quality with more steps. Our 1.0B model outperforms its VAR counterpart on the ImageNet 256times256 benchmark. Moreover, when zero-shot transfer the image generation process with 13 steps, the performance further improves to 2.08 FID, outperforming state-of-the-art autoregressive models AiM/VAR by 0.25/0.28 FID and popular diffusion models LDM/DiT by 1.52/0.19 FID, respectively. When transferring our 1.0B model to the ImageNet 512times512 benchmark in a zero-shot manner, FlexVAR achieves competitive results compared to the VAR 2.3B model, which is a fully supervised model trained at 512times512 resolution.
Wide Residual Networks
Deep residual networks were shown to be able to scale up to thousands of layers and still have improving performance. However, each fraction of a percent of improved accuracy costs nearly doubling the number of layers, and so training very deep residual networks has a problem of diminishing feature reuse, which makes these networks very slow to train. To tackle these problems, in this paper we conduct a detailed experimental study on the architecture of ResNet blocks, based on which we propose a novel architecture where we decrease depth and increase width of residual networks. We call the resulting network structures wide residual networks (WRNs) and show that these are far superior over their commonly used thin and very deep counterparts. For example, we demonstrate that even a simple 16-layer-deep wide residual network outperforms in accuracy and efficiency all previous deep residual networks, including thousand-layer-deep networks, achieving new state-of-the-art results on CIFAR, SVHN, COCO, and significant improvements on ImageNet. Our code and models are available at https://github.com/szagoruyko/wide-residual-networks
Personalized Residuals for Concept-Driven Text-to-Image Generation
We present personalized residuals and localized attention-guided sampling for efficient concept-driven generation using text-to-image diffusion models. Our method first represents concepts by freezing the weights of a pretrained text-conditioned diffusion model and learning low-rank residuals for a small subset of the model's layers. The residual-based approach then directly enables application of our proposed sampling technique, which applies the learned residuals only in areas where the concept is localized via cross-attention and applies the original diffusion weights in all other regions. Localized sampling therefore combines the learned identity of the concept with the existing generative prior of the underlying diffusion model. We show that personalized residuals effectively capture the identity of a concept in ~3 minutes on a single GPU without the use of regularization images and with fewer parameters than previous models, and localized sampling allows using the original model as strong prior for large parts of the image.
Investigating the Role of Feed-Forward Networks in Transformers Using Parallel Attention and Feed-Forward Net Design
This paper investigates the key role of Feed-Forward Networks (FFNs) in transformer models by utilizing the Parallel Attention and Feed-Forward Net Design (PAF) architecture, and comparing it to their Series Attention and Feed-Forward Net Design (SAF) counterparts. Central to the effectiveness of PAF are two main assumptions regarding the FFN block and the attention block within a layer: 1) the primary function of the FFN block is to maintain isotropy among token embeddings and prevent their degeneration, and 2) the residual norm computed in the attention block is substantially smaller than the input token embedding norm. To empirically validate these assumptions, we train PAF variants of two large language models (RoBERTa-large and bert-large-uncased). Our results demonstrate that both assumptions hold true in the PAF design. This study contributes to a deeper understanding of the roles and interactions between FFNs and self-attention mechanisms in transformer architectures.
Transformer Dynamics: A neuroscientific approach to interpretability of large language models
As artificial intelligence models have exploded in scale and capability, understanding of their internal mechanisms remains a critical challenge. Inspired by the success of dynamical systems approaches in neuroscience, here we propose a novel framework for studying computations in deep learning systems. We focus on the residual stream (RS) in transformer models, conceptualizing it as a dynamical system evolving across layers. We find that activations of individual RS units exhibit strong continuity across layers, despite the RS being a non-privileged basis. Activations in the RS accelerate and grow denser over layers, while individual units trace unstable periodic orbits. In reduced-dimensional spaces, the RS follows a curved trajectory with attractor-like dynamics in the lower layers. These insights bridge dynamical systems theory and mechanistic interpretability, establishing a foundation for a "neuroscience of AI" that combines theoretical rigor with large-scale data analysis to advance our understanding of modern neural networks.
Neural Ordinary Differential Equations
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
Unlocking Deterministic Robustness Certification on ImageNet
Despite the promise of Lipschitz-based methods for provably-robust deep learning with deterministic guarantees, current state-of-the-art results are limited to feed-forward Convolutional Networks (ConvNets) on low-dimensional data, such as CIFAR-10. This paper investigates strategies for expanding certifiably robust training to larger, deeper models. A key challenge in certifying deep networks is efficient calculation of the Lipschitz bound for residual blocks found in ResNet and ViT architectures. We show that fast ways of bounding the Lipschitz constant for conventional ResNets are loose, and show how to address this by designing a new residual block, leading to the Linear ResNet (LiResNet) architecture. We then introduce Efficient Margin MAximization (EMMA), a loss function that stabilizes robust training by simultaneously penalizing worst-case adversarial examples from all classes. Together, these contributions yield new state-of-the-art robust accuracy on CIFAR-10/100 and Tiny-ImageNet under ell_2 perturbations. Moreover, for the first time, we are able to scale up fast deterministic robustness guarantees to ImageNet, demonstrating that this approach to robust learning can be applied to real-world applications. We release our code on Github: https://github.com/klasleino/gloro.
CLIP-Guided StyleGAN Inversion for Text-Driven Real Image Editing
Researchers have recently begun exploring the use of StyleGAN-based models for real image editing. One particularly interesting application is using natural language descriptions to guide the editing process. Existing approaches for editing images using language either resort to instance-level latent code optimization or map predefined text prompts to some editing directions in the latent space. However, these approaches have inherent limitations. The former is not very efficient, while the latter often struggles to effectively handle multi-attribute changes. To address these weaknesses, we present CLIPInverter, a new text-driven image editing approach that is able to efficiently and reliably perform multi-attribute changes. The core of our method is the use of novel, lightweight text-conditioned adapter layers integrated into pretrained GAN-inversion networks. We demonstrate that by conditioning the initial inversion step on the CLIP embedding of the target description, we are able to obtain more successful edit directions. Additionally, we use a CLIP-guided refinement step to make corrections in the resulting residual latent codes, which further improves the alignment with the text prompt. Our method outperforms competing approaches in terms of manipulation accuracy and photo-realism on various domains including human faces, cats, and birds, as shown by our qualitative and quantitative results.
Mitigating the Impact of Outlier Channels for Language Model Quantization with Activation Regularization
We consider the problem of accurate quantization for language models, where both the weights and activations are uniformly quantized to 4 bits per parameter, the lowest bitwidth format natively supported by GPU hardware. In this context, the key challenge is activation quantization: it is known that language models contain outlier channels whose values on average are orders of magnitude higher than than other channels, which prevents accurate low-bitwidth quantization with known techniques. We systematically study this phenomena and find that these outlier channels emerge early in training, and that they occur more frequently in layers with residual streams. We then propose a simple strategy which regularizes a layer's inputs via quantization-aware training (QAT) and its outputs via activation kurtosis regularization. We show that regularizing both the inputs and outputs is crucial for preventing a model's "migrating" the difficulty in input quantization to the weights, which makes post-training quantization (PTQ) of weights more difficult. When combined with weight PTQ, we show that our approach can obtain a W4A4 model that performs competitively to the standard-precision W16A16 baseline.
One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion Schedule Flaws and Enhancing Low-Frequency Controls
It is well known that many open-released foundational diffusion models have difficulty in generating images that substantially depart from average brightness, despite such images being present in the training data. This is due to an inconsistency: while denoising starts from pure Gaussian noise during inference, the training noise schedule retains residual data even in the final timestep distribution, due to difficulties in numerical conditioning in mainstream formulation, leading to unintended bias during inference. To mitigate this issue, certain epsilon-prediction models are combined with an ad-hoc offset-noise methodology. In parallel, some contemporary models have adopted zero-terminal SNR noise schedules together with v-prediction, which necessitate major alterations to pre-trained models. However, such changes risk destabilizing a large multitude of community-driven applications anchored on these pre-trained models. In light of this, our investigation revisits the fundamental causes, leading to our proposal of an innovative and principled remedy, called One More Step (OMS). By integrating a compact network and incorporating an additional simple yet effective step during inference, OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters. Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
U$^2$-Net: Going Deeper with Nested U-Structure for Salient Object Detection
In this paper, we design a simple yet powerful deep network architecture, U^2-Net, for salient object detection (SOD). The architecture of our U^2-Net is a two-level nested U-structure. The design has the following advantages: (1) it is able to capture more contextual information from different scales thanks to the mixture of receptive fields of different sizes in our proposed ReSidual U-blocks (RSU), (2) it increases the depth of the whole architecture without significantly increasing the computational cost because of the pooling operations used in these RSU blocks. This architecture enables us to train a deep network from scratch without using backbones from image classification tasks. We instantiate two models of the proposed architecture, U^2-Net (176.3 MB, 30 FPS on GTX 1080Ti GPU) and U^2-Net^{dagger} (4.7 MB, 40 FPS), to facilitate the usage in different environments. Both models achieve competitive performance on six SOD datasets. The code is available: https://github.com/NathanUA/U-2-Net.
GridFormer: Residual Dense Transformer with Grid Structure for Image Restoration in Adverse Weather Conditions
Image restoration in adverse weather conditions is a difficult task in computer vision. In this paper, we propose a novel transformer-based framework called GridFormer which serves as a backbone for image restoration under adverse weather conditions. GridFormer is designed in a grid structure using a residual dense transformer block, and it introduces two core designs. First, it uses an enhanced attention mechanism in the transformer layer. The mechanism includes stages of the sampler and compact self-attention to improve efficiency, and a local enhancement stage to strengthen local information. Second, we introduce a residual dense transformer block (RDTB) as the final GridFormer layer. This design further improves the network's ability to learn effective features from both preceding and current local features. The GridFormer framework achieves state-of-the-art results on five diverse image restoration tasks in adverse weather conditions, including image deraining, dehazing, deraining & dehazing, desnowing, and multi-weather restoration. The source code and pre-trained models will be released.
Residual Pattern Learning for Pixel-wise Out-of-Distribution Detection in Semantic Segmentation
Semantic segmentation models classify pixels into a set of known (``in-distribution'') visual classes. When deployed in an open world, the reliability of these models depends on their ability not only to classify in-distribution pixels but also to detect out-of-distribution (OoD) pixels. Historically, the poor OoD detection performance of these models has motivated the design of methods based on model re-training using synthetic training images that include OoD visual objects. Although successful, these re-trained methods have two issues: 1) their in-distribution segmentation accuracy may drop during re-training, and 2) their OoD detection accuracy does not generalise well to new contexts (e.g., country surroundings) outside the training set (e.g., city surroundings). In this paper, we mitigate these issues with: (i) a new residual pattern learning (RPL) module that assists the segmentation model to detect OoD pixels without affecting the inlier segmentation performance; and (ii) a novel context-robust contrastive learning (CoroCL) that enforces RPL to robustly detect OoD pixels among various contexts. Our approach improves by around 10\% FPR and 7\% AuPRC the previous state-of-the-art in Fishyscapes, Segment-Me-If-You-Can, and RoadAnomaly datasets. Our code is available at: https://github.com/yyliu01/RPL.
Vec-Tok-VC+: Residual-enhanced Robust Zero-shot Voice Conversion with Progressive Constraints in a Dual-mode Training Strategy
Zero-shot voice conversion (VC) aims to transform source speech into arbitrary unseen target voice while keeping the linguistic content unchanged. Recent VC methods have made significant progress, but semantic losses in the decoupling process as well as training-inference mismatch still hinder conversion performance. In this paper, we propose Vec-Tok-VC+, a novel prompt-based zero-shot VC model improved from Vec-Tok Codec, achieving voice conversion given only a 3s target speaker prompt. We design a residual-enhanced K-Means decoupler to enhance the semantic content extraction with a two-layer clustering process. Besides, we employ teacher-guided refinement to simulate the conversion process to eliminate the training-inference mismatch, forming a dual-mode training strategy. Furthermore, we design a multi-codebook progressive loss function to constrain the layer-wise output of the model from coarse to fine to improve speaker similarity and content accuracy. Objective and subjective evaluations demonstrate that Vec-Tok-VC+ outperforms the strong baselines in naturalness, intelligibility, and speaker similarity.
Value Residual Learning For Alleviating Attention Concentration In Transformers
Transformers can capture long-range dependencies using self-attention, allowing tokens to attend to all others directly. However, stacking multiple attention layers leads to attention concentration. One natural way to address this issue is to use cross-layer attention, allowing information from earlier layers to be directly accessible to later layers. However, this approach is computationally expensive. To address this problem, we propose Transformer with residual value (ResFormer) which approximates cross-layer attention through adding a residual connection from the values of the the first layer to all subsequent layers. Based on this method, one variant is the Transformer with single layer value (SVFormer), where all layers share the same value embedding from first layer, reducing the KV cache by nearly 50%. Comprehensive empirical evidence demonstrates that ResFormer mitigates attention concentration problem in deeper layers and enhances representation across most layers, outperforming the vanilla Transformer, DenseFormer, and NeuTRENO in training error as well as downstream tasks. SVFormer trains significantly faster than the vanilla Transformer and performs better than other methods like GQA and CLA, with performance influenced by sequence length and cumulative learning rate.
TRIP: Temporal Residual Learning with Image Noise Prior for Image-to-Video Diffusion Models
Recent advances in text-to-video generation have demonstrated the utility of powerful diffusion models. Nevertheless, the problem is not trivial when shaping diffusion models to animate static image (i.e., image-to-video generation). The difficulty originates from the aspect that the diffusion process of subsequent animated frames should not only preserve the faithful alignment with the given image but also pursue temporal coherence among adjacent frames. To alleviate this, we present TRIP, a new recipe of image-to-video diffusion paradigm that pivots on image noise prior derived from static image to jointly trigger inter-frame relational reasoning and ease the coherent temporal modeling via temporal residual learning. Technically, the image noise prior is first attained through one-step backward diffusion process based on both static image and noised video latent codes. Next, TRIP executes a residual-like dual-path scheme for noise prediction: 1) a shortcut path that directly takes image noise prior as the reference noise of each frame to amplify the alignment between the first frame and subsequent frames; 2) a residual path that employs 3D-UNet over noised video and static image latent codes to enable inter-frame relational reasoning, thereby easing the learning of the residual noise for each frame. Furthermore, both reference and residual noise of each frame are dynamically merged via attention mechanism for final video generation. Extensive experiments on WebVid-10M, DTDB and MSR-VTT datasets demonstrate the effectiveness of our TRIP for image-to-video generation. Please see our project page at https://trip-i2v.github.io/TRIP/.
ResFields: Residual Neural Fields for Spatiotemporal Signals
Neural fields, a category of neural networks trained to represent high-frequency signals, have gained significant attention in recent years due to their impressive performance in modeling complex 3D data, especially large neural signed distance (SDFs) or radiance fields (NeRFs) via a single multi-layer perceptron (MLP). However, despite the power and simplicity of representing signals with an MLP, these methods still face challenges when modeling large and complex temporal signals due to the limited capacity of MLPs. In this paper, we propose an effective approach to address this limitation by incorporating temporal residual layers into neural fields, dubbed ResFields, a novel class of networks specifically designed to effectively represent complex temporal signals. We conduct a comprehensive analysis of the properties of ResFields and propose a matrix factorization technique to reduce the number of trainable parameters and enhance generalization capabilities. Importantly, our formulation seamlessly integrates with existing techniques and consistently improves results across various challenging tasks: 2D video approximation, dynamic shape modeling via temporal SDFs, and dynamic NeRF reconstruction. Lastly, we demonstrate the practical utility of ResFields by showcasing its effectiveness in capturing dynamic 3D scenes from sparse sensory inputs of a lightweight capture system.
Residual Denoising Diffusion Models
Current diffusion-based image restoration methods feed degraded input images as conditions into the noise estimation network. However, interpreting this diffusion process is challenging since it essentially generates the target image from the noise. To establish a unified and more interpretable model for image generation and restoration, we propose residual denoising diffusion models (RDDM). In contrast to existing diffusion models (e.g., DDPM or DDIM) that focus solely on noise estimation, our RDDM predicts residuals to represent directional diffusion from the target domain to the input domain, while concurrently estimating noise to account for random perturbations in the diffusion process. The introduction of residuals allows us to redefine the forward diffusion process, wherein the target image progressively diffuses into a purely noisy image or a noise-carrying input image, thus unifying image generation and restoration. We demonstrate that our sampling process is consistent with that of DDPM and DDIM through coefficient transformation, and propose a partially path-independent generation process to better understand the reverse process. Notably, with native support for conditional inputs, our RDDM enables a generic UNet, trained with only an ell _1 loss and a batch size of 1, to compete with state-of-the-art image restoration methods. We provide code and pre-trained models to encourage further exploration, application, and development of our innovative framework (https://github.com/nachifur/RDDM).
Residual Prompt Tuning: Improving Prompt Tuning with Residual Reparameterization
Prompt tuning is one of the successful approaches for parameter-efficient tuning of pre-trained language models. Despite being arguably the most parameter-efficient (tuned soft prompts constitute <0.1% of total parameters), it typically performs worse than other efficient tuning methods and is quite sensitive to hyper-parameters. In this work, we introduce Residual Prompt Tuning - a simple and efficient method that significantly improves the performance and stability of prompt tuning. We propose to reparameterize soft prompt embeddings using a shallow network with a residual connection. Our experiments show that Residual Prompt Tuning significantly outperforms prompt tuning on SuperGLUE benchmark. Notably, our method reaches +7 points improvement over prompt tuning with T5-Base and allows to reduce the prompt length by 10x without hurting performance. In addition, we show that our approach is robust to the choice of learning rate and prompt initialization, and is effective in few-shot settings.
ReLaX-VQA: Residual Fragment and Layer Stack Extraction for Enhancing Video Quality Assessment
With the rapid growth of User-Generated Content (UGC) exchanged between users and sharing platforms, the need for video quality assessment in the wild is increasingly evident. UGC is typically acquired using consumer devices and undergoes multiple rounds of compression (transcoding) before reaching the end user. Therefore, traditional quality metrics that employ the original content as a reference are not suitable. In this paper, we propose ReLaX-VQA, a novel No-Reference Video Quality Assessment (NR-VQA) model that aims to address the challenges of evaluating the quality of diverse video content without reference to the original uncompressed videos. ReLaX-VQA uses frame differences to select spatio-temporal fragments intelligently together with different expressions of spatial features associated with the sampled frames. These are then used to better capture spatial and temporal variabilities in the quality of neighbouring frames. Furthermore, the model enhances abstraction by employing layer-stacking techniques in deep neural network features from Residual Networks and Vision Transformers. Extensive testing across four UGC datasets demonstrates that ReLaX-VQA consistently outperforms existing NR-VQA methods, achieving an average SRCC of 0.8658 and PLCC of 0.8873. Open-source code and trained models that will facilitate further research and applications of NR-VQA can be found at https://github.com/xinyiW915/ReLaX-VQA.
Residual Mixture of Experts
Mixture of Experts (MoE) is able to scale up vision transformers effectively. However, it requires prohibiting computation resources to train a large MoE transformer. In this paper, we propose Residual Mixture of Experts (RMoE), an efficient training pipeline for MoE vision transformers on downstream tasks, such as segmentation and detection. RMoE achieves comparable results with the upper-bound MoE training, while only introducing minor additional training cost than the lower-bound non-MoE training pipelines. The efficiency is supported by our key observation: the weights of an MoE transformer can be factored into an input-independent core and an input-dependent residual. Compared with the weight core, the weight residual can be efficiently trained with much less computation resource, e.g., finetuning on the downstream data. We show that, compared with the current MoE training pipeline, we get comparable results while saving over 30% training cost. When compared with state-of-the-art non- MoE transformers, such as Swin-T / CvT-13 / Swin-L, we get +1.1 / 0.9 / 1.0 mIoU gain on ADE20K segmentation and +1.4 / 1.6 / 0.6 AP gain on MS-COCO object detection task with less than 3% additional training cost.
Fixup Initialization: Residual Learning Without Normalization
Normalization layers are a staple in state-of-the-art deep neural network architectures. They are widely believed to stabilize training, enable higher learning rate, accelerate convergence and improve generalization, though the reason for their effectiveness is still an active research topic. In this work, we challenge the commonly-held beliefs by showing that none of the perceived benefits is unique to normalization. Specifically, we propose fixed-update initialization (Fixup), an initialization motivated by solving the exploding and vanishing gradient problem at the beginning of training via properly rescaling a standard initialization. We find training residual networks with Fixup to be as stable as training with normalization -- even for networks with 10,000 layers. Furthermore, with proper regularization, Fixup enables residual networks without normalization to achieve state-of-the-art performance in image classification and machine translation.
Deep Pyramidal Residual Networks
Deep convolutional neural networks (DCNNs) have shown remarkable performance in image classification tasks in recent years. Generally, deep neural network architectures are stacks consisting of a large number of convolutional layers, and they perform downsampling along the spatial dimension via pooling to reduce memory usage. Concurrently, the feature map dimension (i.e., the number of channels) is sharply increased at downsampling locations, which is essential to ensure effective performance because it increases the diversity of high-level attributes. This also applies to residual networks and is very closely related to their performance. In this research, instead of sharply increasing the feature map dimension at units that perform downsampling, we gradually increase the feature map dimension at all units to involve as many locations as possible. This design, which is discussed in depth together with our new insights, has proven to be an effective means of improving generalization ability. Furthermore, we propose a novel residual unit capable of further improving the classification accuracy with our new network architecture. Experiments on benchmark CIFAR-10, CIFAR-100, and ImageNet datasets have shown that our network architecture has superior generalization ability compared to the original residual networks. Code is available at https://github.com/jhkim89/PyramidNet}
Loop-Residual Neural Networks for Iterative Refinement
The success of large-scale language models like GPT can be attributed to their ability to efficiently predict the next token in a sequence. However, these models rely on constant computational effort regardless of the complexity of the token they are predicting, lacking the capacity for iterative refinement. In this paper, we introduce a novel Loop-Residual Neural Network, which achieves better performance by utilizing longer computational time without increasing the model size. Our approach revisits the input multiple times, refining the prediction by iteratively looping over a subset of the model with residual connections. We demonstrate the effectiveness of this method through experiments comparing versions of GPT-2 with our Loop-Residual models, showing improved performance in language modeling tasks while maintaining similar parameter counts. Importantly, these improvements are achieved without the need for extra training data.
Temporal Residual Guided Diffusion Framework for Event-Driven Video Reconstruction
Event-based video reconstruction has garnered increasing attention due to its advantages, such as high dynamic range and rapid motion capture capabilities. However, current methods often prioritize the extraction of temporal information from continuous event flow, leading to an overemphasis on low-frequency texture features in the scene, resulting in over-smoothing and blurry artifacts. Addressing this challenge necessitates the integration of conditional information, encompassing temporal features, low-frequency texture, and high-frequency events, to guide the Denoising Diffusion Probabilistic Model (DDPM) in producing accurate and natural outputs. To tackle this issue, we introduce a novel approach, the Temporal Residual Guided Diffusion Framework, which effectively leverages both temporal and frequency-based event priors. Our framework incorporates three key conditioning modules: a pre-trained low-frequency intensity estimation module, a temporal recurrent encoder module, and an attention-based high-frequency prior enhancement module. In order to capture temporal scene variations from the events at the current moment, we employ a temporal-domain residual image as the target for the diffusion model. Through the combination of these three conditioning paths and the temporal residual framework, our framework excels in reconstructing high-quality videos from event flow, mitigating issues such as artifacts and over-smoothing commonly observed in previous approaches. Extensive experiments conducted on multiple benchmark datasets validate the superior performance of our framework compared to prior event-based reconstruction methods.
ResBit: Residual Bit Vector for Categorical Values
One-hot vectors, a common method for representing discrete/categorical data, in machine learning are widely used because of their simplicity and intuitiveness. However, one-hot vectors suffer from a linear increase in dimensionality, posing computational and memory challenges, especially when dealing with datasets containing numerous categories. In this paper, we focus on tabular data generation, and reveal the multinomial diffusion faces the mode collapse phenomenon when the cardinality is high. Moreover, due to the limitations of one-hot vectors, the training phase takes time longer in such a situation. To address these issues, we propose Residual Bit Vectors (ResBit), a technique for densely representing categorical data. ResBit is an extension of analog bits and overcomes limitations of analog bits when applied to tabular data generation. Our experiments demonstrate that ResBit not only accelerates training but also maintains performance when compared with the situations before applying ResBit. Furthermore, our results indicate that many existing methods struggle with high-cardinality data, underscoring the need for lower-dimensional representations, such as ResBit and latent vectors.
Dynamic Residual Classifier for Class Incremental Learning
The rehearsal strategy is widely used to alleviate the catastrophic forgetting problem in class incremental learning (CIL) by preserving limited exemplars from previous tasks. With imbalanced sample numbers between old and new classes, the classifier learning can be biased. Existing CIL methods exploit the long-tailed (LT) recognition techniques, e.g., the adjusted losses and the data re-sampling methods, to handle the data imbalance issue within each increment task. In this work, the dynamic nature of data imbalance in CIL is shown and a novel Dynamic Residual Classifier (DRC) is proposed to handle this challenging scenario. Specifically, DRC is built upon a recent advance residual classifier with the branch layer merging to handle the model-growing problem. Moreover, DRC is compatible with different CIL pipelines and substantially improves them. Combining DRC with the model adaptation and fusion (MAF) pipeline, this method achieves state-of-the-art results on both the conventional CIL and the LT-CIL benchmarks. Extensive experiments are also conducted for a detailed analysis. The code is publicly available.
Shapley Based Residual Decomposition for Instance Analysis
In this paper, we introduce the idea of decomposing the residuals of regression with respect to the data instances instead of features. This allows us to determine the effects of each individual instance on the model and each other, and in doing so makes for a model-agnostic method of identifying instances of interest. In doing so, we can also determine the appropriateness of the model and data in the wider context of a given study. The paper focuses on the possible applications that such a framework brings to the relatively unexplored field of instance analysis in the context of Explainable AI tasks.
ReconResNet: Regularised Residual Learning for MR Image Reconstruction of Undersampled Cartesian and Radial Data
MRI is an inherently slow process, which leads to long scan time for high-resolution imaging. The speed of acquisition can be increased by ignoring parts of the data (undersampling). Consequently, this leads to the degradation of image quality, such as loss of resolution or introduction of image artefacts. This work aims to reconstruct highly undersampled Cartesian or radial MR acquisitions, with better resolution and with less to no artefact compared to conventional techniques like compressed sensing. In recent times, deep learning has emerged as a very important area of research and has shown immense potential in solving inverse problems, e.g. MR image reconstruction. In this paper, a deep learning based MR image reconstruction framework is proposed, which includes a modified regularised version of ResNet as the network backbone to remove artefacts from the undersampled image, followed by data consistency steps that fusions the network output with the data already available from undersampled k-space in order to further improve reconstruction quality. The performance of this framework for various undersampling patterns has also been tested, and it has been observed that the framework is robust to deal with various sampling patterns, even when mixed together while training, and results in very high quality reconstruction, in terms of high SSIM (highest being 0.990pm0.006 for acceleration factor of 3.5), while being compared with the fully sampled reconstruction. It has been shown that the proposed framework can successfully reconstruct even for an acceleration factor of 20 for Cartesian (0.968pm0.005) and 17 for radially (0.962pm0.012) sampled data. Furthermore, it has been shown that the framework preserves brain pathology during reconstruction while being trained on healthy subjects.
Stochastic Latent Residual Video Prediction
Designing video prediction models that account for the inherent uncertainty of the future is challenging. Most works in the literature are based on stochastic image-autoregressive recurrent networks, which raises several performance and applicability issues. An alternative is to use fully latent temporal models which untie frame synthesis and temporal dynamics. However, no such model for stochastic video prediction has been proposed in the literature yet, due to design and training difficulties. In this paper, we overcome these difficulties by introducing a novel stochastic temporal model whose dynamics are governed in a latent space by a residual update rule. This first-order scheme is motivated by discretization schemes of differential equations. It naturally models video dynamics as it allows our simpler, more interpretable, latent model to outperform prior state-of-the-art methods on challenging datasets.
Densely Residual Laplacian Super-Resolution
Super-Resolution convolutional neural networks have recently demonstrated high-quality restoration for single images. However, existing algorithms often require very deep architectures and long training times. Furthermore, current convolutional neural networks for super-resolution are unable to exploit features at multiple scales and weigh them equally, limiting their learning capability. In this exposition, we present a compact and accurate super-resolution algorithm namely, Densely Residual Laplacian Network (DRLN). The proposed network employs cascading residual on the residual structure to allow the flow of low-frequency information to focus on learning high and mid-level features. In addition, deep supervision is achieved via the densely concatenated residual blocks settings, which also helps in learning from high-level complex features. Moreover, we propose Laplacian attention to model the crucial features to learn the inter and intra-level dependencies between the feature maps. Furthermore, comprehensive quantitative and qualitative evaluations on low-resolution, noisy low-resolution, and real historical image benchmark datasets illustrate that our DRLN algorithm performs favorably against the state-of-the-art methods visually and accurately.
Residual Attention Network for Image Classification
In this work, we propose "Residual Attention Network", a convolutional neural network using attention mechanism which can incorporate with state-of-art feed forward network architecture in an end-to-end training fashion. Our Residual Attention Network is built by stacking Attention Modules which generate attention-aware features. The attention-aware features from different modules change adaptively as layers going deeper. Inside each Attention Module, bottom-up top-down feedforward structure is used to unfold the feedforward and feedback attention process into a single feedforward process. Importantly, we propose attention residual learning to train very deep Residual Attention Networks which can be easily scaled up to hundreds of layers. Extensive analyses are conducted on CIFAR-10 and CIFAR-100 datasets to verify the effectiveness of every module mentioned above. Our Residual Attention Network achieves state-of-the-art object recognition performance on three benchmark datasets including CIFAR-10 (3.90% error), CIFAR-100 (20.45% error) and ImageNet (4.8% single model and single crop, top-5 error). Note that, our method achieves 0.6% top-1 accuracy improvement with 46% trunk depth and 69% forward FLOPs comparing to ResNet-200. The experiment also demonstrates that our network is robust against noisy labels.
Personalised aesthetics with residual adapters
The use of computational methods to evaluate aesthetics in photography has gained interest in recent years due to the popularization of convolutional neural networks and the availability of new annotated datasets. Most studies in this area have focused on designing models that do not take into account individual preferences for the prediction of the aesthetic value of pictures. We propose a model based on residual learning that is capable of learning subjective, user specific preferences over aesthetics in photography, while surpassing the state-of-the-art methods and keeping a limited number of user-specific parameters in the model. Our model can also be used for picture enhancement, and it is suitable for content-based or hybrid recommender systems in which the amount of computational resources is limited.
Aggregated Residual Transformations for Deep Neural Networks
We present a simple, highly modularized network architecture for image classification. Our network is constructed by repeating a building block that aggregates a set of transformations with the same topology. Our simple design results in a homogeneous, multi-branch architecture that has only a few hyper-parameters to set. This strategy exposes a new dimension, which we call "cardinality" (the size of the set of transformations), as an essential factor in addition to the dimensions of depth and width. On the ImageNet-1K dataset, we empirically show that even under the restricted condition of maintaining complexity, increasing cardinality is able to improve classification accuracy. Moreover, increasing cardinality is more effective than going deeper or wider when we increase the capacity. Our models, named ResNeXt, are the foundations of our entry to the ILSVRC 2016 classification task in which we secured 2nd place. We further investigate ResNeXt on an ImageNet-5K set and the COCO detection set, also showing better results than its ResNet counterpart. The code and models are publicly available online.
HiFi-Codec: Group-residual Vector quantization for High Fidelity Audio Codec
Audio codec models are widely used in audio communication as a crucial technique for compressing audio into discrete representations. Nowadays, audio codec models are increasingly utilized in generation fields as intermediate representations. For instance, AudioLM is an audio generation model that uses the discrete representation of SoundStream as a training target, while VALL-E employs the Encodec model as an intermediate feature to aid TTS tasks. Despite their usefulness, two challenges persist: (1) training these audio codec models can be difficult due to the lack of publicly available training processes and the need for large-scale data and GPUs; (2) achieving good reconstruction performance requires many codebooks, which increases the burden on generation models. In this study, we propose a group-residual vector quantization (GRVQ) technique and use it to develop a novel High Fidelity Audio Codec model, HiFi-Codec, which only requires 4 codebooks. We train all the models using publicly available TTS data such as LibriTTS, VCTK, AISHELL, and more, with a total duration of over 1000 hours, using 8 GPUs. Our experimental results show that HiFi-Codec outperforms Encodec in terms of reconstruction performance despite requiring only 4 codebooks. To facilitate research in audio codec and generation, we introduce AcademiCodec, the first open-source audio codec toolkit that offers training codes and pre-trained models for Encodec, SoundStream, and HiFi-Codec. Code and pre-trained model can be found on: https://github.com/yangdongchao/AcademiCodec{https://github.com/yangdongchao/AcademiCodec}
MoRE: Mixture of Residual Experts for Humanoid Lifelike Gaits Learning on Complex Terrains
Humanoid robots have demonstrated robust locomotion capabilities using Reinforcement Learning (RL)-based approaches. Further, to obtain human-like behaviors, existing methods integrate human motion-tracking or motion prior in the RL framework. However, these methods are limited in flat terrains with proprioception only, restricting their abilities to traverse challenging terrains with human-like gaits. In this work, we propose a novel framework using a mixture of latent residual experts with multi-discriminators to train an RL policy, which is capable of traversing complex terrains in controllable lifelike gaits with exteroception. Our two-stage training pipeline first teaches the policy to traverse complex terrains using a depth camera, and then enables gait-commanded switching between human-like gait patterns. We also design gait rewards to adjust human-like behaviors like robot base height. Simulation and real-world experiments demonstrate that our framework exhibits exceptional performance in traversing complex terrains, and achieves seamless transitions between multiple human-like gait patterns.
Ladder-residual: parallelism-aware architecture for accelerating large model inference with communication overlapping
Large language model inference is both memory-intensive and time-consuming, often requiring distributed algorithms to efficiently scale. Various model parallelism strategies are used in multi-gpu training and inference to partition computation across multiple devices, reducing memory load and computation time. However, using model parallelism necessitates communication of information between GPUs, which has been a major bottleneck and limits the gains obtained by scaling up the number of devices. We introduce Ladder Residual, a simple architectural modification applicable to all residual-based models that enables straightforward overlapping that effectively hides the latency of communication. Our insight is that in addition to systems optimization, one can also redesign the model architecture to decouple communication from computation. While Ladder Residual can allow communication-computation decoupling in conventional parallelism patterns, we focus on Tensor Parallelism in this paper, which is particularly bottlenecked by its heavy communication. For a Transformer model with 70B parameters, applying Ladder Residual to all its layers can achieve 30% end-to-end wall clock speed up at inference time with TP sharding over 8 devices. We refer the resulting Transformer model as the Ladder Transformer. We train a 1B and 3B Ladder Transformer from scratch and observe comparable performance to a standard dense transformer baseline. We also show that it is possible to convert parts of the Llama-3.1 8B model to our Ladder Residual architecture with minimal accuracy degradation by only retraining for 3B tokens.
LAuReL: Learned Augmented Residual Layer
One of the core pillars of efficient deep learning methods is architectural improvements such as the residual/skip connection, which has led to significantly better model convergence and quality. Since then the residual connection has become ubiquitous in not just convolutional neural networks but also transformer-based architectures, the backbone of LLMs. In this paper we introduce Learned Augmented Residual Layer (LAuReL) -- a novel generalization of the canonical residual connection -- with the goal to be an in-situ replacement of the latter while outperforming on both model quality and footprint metrics. Our experiments show that using \laurel can help boost performance for both vision and language models. For example, on the ResNet-50, ImageNet 1K task, it achieves 60% of the gains from adding an extra layer, while only adding 0.003% more parameters, and matches it while adding 2.6times fewer parameters.
Background Adaptation with Residual Modeling for Exemplar-Free Class-Incremental Semantic Segmentation
Class Incremental Semantic Segmentation~(CISS), within Incremental Learning for semantic segmentation, targets segmenting new categories while reducing the catastrophic forgetting on the old categories.Besides, background shifting, where the background category changes constantly in each step, is a special challenge for CISS. Current methods with a shared background classifier struggle to keep up with these changes, leading to decreased stability in background predictions and reduced accuracy of segmentation. For this special challenge, we designed a novel background adaptation mechanism, which explicitly models the background residual rather than the background itself in each step, and aggregates these residuals to represent the evolving background. Therefore, the background adaptation mechanism ensures the stability of previous background classifiers, while enabling the model to concentrate on the easy-learned residuals from the additional channel, which enhances background discernment for better prediction of novel categories. To precisely optimize the background adaptation mechanism, we propose Pseudo Background Binary Cross-Entropy loss and Background Adaptation losses, which amplify the adaptation effect. Group Knowledge Distillation and Background Feature Distillation strategies are designed to prevent forgetting old categories. Our approach, evaluated across various incremental scenarios on Pascal VOC 2012 and ADE20K datasets, outperforms prior exemplar-free state-of-the-art methods with mIoU of 3.0% in VOC 10-1 and 2.0% in ADE 100-5, notably enhancing the accuracy of new classes while mitigating catastrophic forgetting. Code is available in https://andyzaq.github.io/barmsite/.
Controllable Text Generation with Residual Memory Transformer
Large-scale Causal Language Models (CLMs), e.g., GPT3 and ChatGPT, have brought great success in text generation. However, it is still an open challenge to control the generation process of CLM while balancing flexibility, control granularity, and generation efficiency. In this paper, we provide a new alternative for controllable text generation (CTG), by designing a non-intrusive, lightweight control plugin to accompany the generation of CLM at arbitrary time steps. The proposed control plugin, namely Residual Memory Transformer (RMT), has an encoder-decoder setup, which can accept any types of control conditions and cooperate with CLM through a residual learning paradigm, to achieve a more flexible, general, and efficient CTG. Extensive experiments are carried out on various control tasks, in the form of both automatic and human evaluations. The results show the superiority of RMT over a range of state-of-the-art approaches, proving the effectiveness and versatility of our approach.
Implicit regularization of deep residual networks towards neural ODEs
Residual neural networks are state-of-the-art deep learning models. Their continuous-depth analog, neural ordinary differential equations (ODEs), are also widely used. Despite their success, the link between the discrete and continuous models still lacks a solid mathematical foundation. In this article, we take a step in this direction by establishing an implicit regularization of deep residual networks towards neural ODEs, for nonlinear networks trained with gradient flow. We prove that if the network is initialized as a discretization of a neural ODE, then such a discretization holds throughout training. Our results are valid for a finite training time, and also as the training time tends to infinity provided that the network satisfies a Polyak-Lojasiewicz condition. Importantly, this condition holds for a family of residual networks where the residuals are two-layer perceptrons with an overparameterization in width that is only linear, and implies the convergence of gradient flow to a global minimum. Numerical experiments illustrate our results.
ResVGAE: Going Deeper with Residual Modules for Link Prediction
Graph autoencoders are efficient at embedding graph-based data sets. Most graph autoencoder architectures have shallow depths which limits their ability to capture meaningful relations between nodes separated by multi-hops. In this paper, we propose Residual Variational Graph Autoencoder, ResVGAE, a deep variational graph autoencoder model with multiple residual modules. We show that our multiple residual modules, a convolutional layer with residual connection, improve the average precision of the graph autoencoders. Experimental results suggest that our proposed model with residual modules outperforms the models without residual modules and achieves similar results when compared with other state-of-the-art methods.
PyResBugs: A Dataset of Residual Python Bugs for Natural Language-Driven Fault Injection
This paper presents PyResBugs, a curated dataset of residual bugs, i.e., defects that persist undetected during traditional testing but later surface in production, collected from major Python frameworks. Each bug in the dataset is paired with its corresponding fault-free (fixed) version and annotated with multi-level natural language (NL) descriptions. These NL descriptions enable natural language-driven fault injection, offering a novel approach to simulating real-world faults in software systems. By bridging the gap between software fault injection techniques and real-world representativeness, PyResBugs provides researchers with a high-quality resource for advancing AI-driven automated testing in Python systems.
Certain residual properties of HNN-extensions with normal associated subgroups
Let E be the HNN-extension of a group B with subgroups H and K associated according to an isomorphism varphicolon H to K. Suppose that H and K are normal in B and (H cap K)varphi = H cap K. Under these assumptions, we prove necessary and sufficient conditions for E to be residually a C-group, where C is a class of groups closed under taking subgroups, quotient groups, and unrestricted wreath products. Among other things, these conditions give new facts on the residual finiteness and the residual p-finiteness of the group E.
PoRF: Pose Residual Field for Accurate Neural Surface Reconstruction
Neural surface reconstruction is sensitive to the camera pose noise, even if state-of-the-art pose estimators like COLMAP or ARKit are used. More importantly, existing Pose-NeRF joint optimisation methods have struggled to improve pose accuracy in challenging real-world scenarios. To overcome the challenges, we introduce the pose residual field (PoRF), a novel implicit representation that uses an MLP for regressing pose updates. This is more robust than the conventional pose parameter optimisation due to parameter sharing that leverages global information over the entire sequence. Furthermore, we propose an epipolar geometry loss to enhance the supervision that leverages the correspondences exported from COLMAP results without the extra computational overhead. Our method yields promising results. On the DTU dataset, we reduce the rotation error by 78\% for COLMAP poses, leading to the decreased reconstruction Chamfer distance from 3.48mm to 0.85mm. On the MobileBrick dataset that contains casually captured unbounded 360-degree videos, our method refines ARKit poses and improves the reconstruction F1 score from 69.18 to 75.67, outperforming that with the dataset provided ground-truth pose (75.14). These achievements demonstrate the efficacy of our approach in refining camera poses and improving the accuracy of neural surface reconstruction in real-world scenarios.
Residual Aligner Network
Image registration is important for medical imaging, the estimation of the spatial transformation between different images. Many previous studies have used learning-based methods for coarse-to-fine registration to efficiently perform 3D image registration. The coarse-to-fine approach, however, is limited when dealing with the different motions of nearby objects. Here we propose a novel Motion-Aware (MA) structure that captures the different motions in a region. The MA structure incorporates a novel Residual Aligner (RA) module which predicts the multi-head displacement field used to disentangle the different motions of multiple neighbouring objects. Compared with other deep learning methods, the network based on the MA structure and RA module achieve one of the most accurate unsupervised inter-subject registration on the 9 organs of assorted sizes in abdominal CT scans, with the highest-ranked registration of the veins (Dice Similarity Coefficient / Average surface distance: 62\%/4.9mm for the vena cava and 34\%/7.9mm for the portal and splenic vein), with a half-sized structure and more efficient computation. Applied to the segmentation of lungs in chest CT scans, the new network achieves results which were indistinguishable from the best-ranked networks (94\%/3.0mm). Additionally, the theorem on predicted motion pattern and the design of MA structure are validated by further analysis.
Autoregressive Image Generation using Residual Quantization
For autoregressive (AR) modeling of high-resolution images, vector quantization (VQ) represents an image as a sequence of discrete codes. A short sequence length is important for an AR model to reduce its computational costs to consider long-range interactions of codes. However, we postulate that previous VQ cannot shorten the code sequence and generate high-fidelity images together in terms of the rate-distortion trade-off. In this study, we propose the two-stage framework, which consists of Residual-Quantized VAE (RQ-VAE) and RQ-Transformer, to effectively generate high-resolution images. Given a fixed codebook size, RQ-VAE can precisely approximate a feature map of an image and represent the image as a stacked map of discrete codes. Then, RQ-Transformer learns to predict the quantized feature vector at the next position by predicting the next stack of codes. Thanks to the precise approximation of RQ-VAE, we can represent a 256times256 image as 8times8 resolution of the feature map, and RQ-Transformer can efficiently reduce the computational costs. Consequently, our framework outperforms the existing AR models on various benchmarks of unconditional and conditional image generation. Our approach also has a significantly faster sampling speed than previous AR models to generate high-quality images.
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
Discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise (AWGN) at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks such as Gaussian denoising, single image super-resolution and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.
Efficient Generative Modeling with Residual Vector Quantization-Based Tokens
We explore the use of Residual Vector Quantization (RVQ) for high-fidelity generation in vector-quantized generative models. This quantization technique maintains higher data fidelity by employing more in-depth tokens. However, increasing the token number in generative models leads to slower inference speeds. To this end, we introduce ResGen, an efficient RVQ-based discrete diffusion model that generates high-fidelity samples without compromising sampling speed. Our key idea is a direct prediction of vector embedding of collective tokens rather than individual ones. Moreover, we demonstrate that our proposed token masking and multi-token prediction method can be formulated within a principled probabilistic framework using a discrete diffusion process and variational inference. We validate the efficacy and generalizability of the proposed method on two challenging tasks across different modalities: conditional image generation} on ImageNet 256x256 and zero-shot text-to-speech synthesis. Experimental results demonstrate that ResGen outperforms autoregressive counterparts in both tasks, delivering superior performance without compromising sampling speed. Furthermore, as we scale the depth of RVQ, our generative models exhibit enhanced generation fidelity or faster sampling speeds compared to similarly sized baseline models. The project page can be found at https://resgen-genai.github.io
Temporal Residual Jacobians For Rig-free Motion Transfer
We introduce Temporal Residual Jacobians as a novel representation to enable data-driven motion transfer. Our approach does not assume access to any rigging or intermediate shape keyframes, produces geometrically and temporally consistent motions, and can be used to transfer long motion sequences. Central to our approach are two coupled neural networks that individually predict local geometric and temporal changes that are subsequently integrated, spatially and temporally, to produce the final animated meshes. The two networks are jointly trained, complement each other in producing spatial and temporal signals, and are supervised directly with 3D positional information. During inference, in the absence of keyframes, our method essentially solves a motion extrapolation problem. We test our setup on diverse meshes (synthetic and scanned shapes) to demonstrate its superiority in generating realistic and natural-looking animations on unseen body shapes against SoTA alternatives. Supplemental video and code are available at https://temporaljacobians.github.io/ .
REx: Data-Free Residual Quantization Error Expansion
Deep neural networks (DNNs) are ubiquitous in computer vision and natural language processing, but suffer from high inference cost. This problem can be addressed by quantization, which consists in converting floating point operations into a lower bit-width format. With the growing concerns on privacy rights, we focus our efforts on data-free methods. However, such techniques suffer from their lack of adaptability to the target devices, as a hardware typically only support specific bit widths. Thus, to adapt to a variety of devices, a quantization method shall be flexible enough to find good accuracy v.s. speed trade-offs for every bit width and target device. To achieve this, we propose REx, a quantization method that leverages residual error expansion, along with group sparsity and an ensemble approximation for better parallelization. REx is backed off by strong theoretical guarantees and achieves superior performance on every benchmarked application (from vision to NLP tasks), architecture (ConvNets, transformers) and bit-width (from int8 to ternary quantization).
Residual Reservoir Memory Networks
We introduce a novel class of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) paradigm, called Residual Reservoir Memory Networks (ResRMNs). ResRMN combines a linear memory reservoir with a non-linear reservoir, where the latter is based on residual orthogonal connections along the temporal dimension for enhanced long-term propagation of the input. The resulting reservoir state dynamics are studied through the lens of linear stability analysis, and we investigate diverse configurations for the temporal residual connections. The proposed approach is empirically assessed on time-series and pixel-level 1-D classification tasks. Our experimental results highlight the advantages of the proposed approach over other conventional RC models.
Efficient Residual Learning with Mixture-of-Experts for Universal Dexterous Grasping
Universal dexterous grasping across diverse objects presents a fundamental yet formidable challenge in robot learning. Existing approaches using reinforcement learning (RL) to develop policies on extensive object datasets face critical limitations, including complex curriculum design for multi-task learning and limited generalization to unseen objects. To overcome these challenges, we introduce ResDex, a novel approach that integrates residual policy learning with a mixture-of-experts (MoE) framework. ResDex is distinguished by its use of geometry-unaware base policies that are efficiently acquired on individual objects and capable of generalizing across a wide range of unseen objects. Our MoE framework incorporates several base policies to facilitate diverse grasping styles suitable for various objects. By learning residual actions alongside weights that combine these base policies, ResDex enables efficient multi-task RL for universal dexterous grasping. ResDex achieves state-of-the-art performance on the DexGraspNet dataset comprising 3,200 objects with an 88.8% success rate. It exhibits no generalization gap with unseen objects and demonstrates superior training efficiency, mastering all tasks within only 12 hours on a single GPU.
Global Spatial-Temporal Information-based Residual ConvLSTM for Video Space-Time Super-Resolution
By converting low-frame-rate, low-resolution videos into high-frame-rate, high-resolution ones, space-time video super-resolution techniques can enhance visual experiences and facilitate more efficient information dissemination. We propose a convolutional neural network (CNN) for space-time video super-resolution, namely GIRNet. To generate highly accurate features and thus improve performance, the proposed network integrates a feature-level temporal interpolation module with deformable convolutions and a global spatial-temporal information-based residual convolutional long short-term memory (convLSTM) module. In the feature-level temporal interpolation module, we leverage deformable convolution, which adapts to deformations and scale variations of objects across different scene locations. This presents a more efficient solution than conventional convolution for extracting features from moving objects. Our network effectively uses forward and backward feature information to determine inter-frame offsets, leading to the direct generation of interpolated frame features. In the global spatial-temporal information-based residual convLSTM module, the first convLSTM is used to derive global spatial-temporal information from the input features, and the second convLSTM uses the previously computed global spatial-temporal information feature as its initial cell state. This second convLSTM adopts residual connections to preserve spatial information, thereby enhancing the output features. Experiments on the Vimeo90K dataset show that the proposed method outperforms state-of-the-art techniques in peak signal-to-noise-ratio (by 1.45 dB, 1.14 dB, and 0.02 dB over STARnet, TMNet, and 3DAttGAN, respectively), structural similarity index(by 0.027, 0.023, and 0.006 over STARnet, TMNet, and 3DAttGAN, respectively), and visually.
Handwritten digit string recognition by combination of residual network and RNN-CTC
Recurrent neural network (RNN) and connectionist temporal classification (CTC) have showed successes in many sequence labeling tasks with the strong ability of dealing with the problems where the alignment between the inputs and the target labels is unknown. Residual network is a new structure of convolutional neural network and works well in various computer vision tasks. In this paper, we take advantage of the architectures mentioned above to create a new network for handwritten digit string recognition. First we design a residual network to extract features from input images, then we employ a RNN to model the contextual information within feature sequences and predict recognition results. At the top of this network, a standard CTC is applied to calculate the loss and yield the final results. These three parts compose an end-to-end trainable network. The proposed new architecture achieves the highest performances on ORAND-CAR-A and ORAND-CAR-B with recognition rates 89.75% and 91.14%, respectively. In addition, the experiments on a generated captcha dataset which has much longer string length show the potential of the proposed network to handle long strings.
Learning multiple visual domains with residual adapters
There is a growing interest in learning data representations that work well for many different types of problems and data. In this paper, we look in particular at the task of learning a single visual representation that can be successfully utilized in the analysis of very different types of images, from dog breeds to stop signs and digits. Inspired by recent work on learning networks that predict the parameters of another, we develop a tunable deep network architecture that, by means of adapter residual modules, can be steered on the fly to diverse visual domains. Our method achieves a high degree of parameter sharing while maintaining or even improving the accuracy of domain-specific representations. We also introduce the Visual Decathlon Challenge, a benchmark that evaluates the ability of representations to capture simultaneously ten very different visual domains and measures their ability to recognize well uniformly.
ResQ: Residual Quantization for Video Perception
This paper accelerates video perception, such as semantic segmentation and human pose estimation, by levering cross-frame redundancies. Unlike the existing approaches, which avoid redundant computations by warping the past features using optical-flow or by performing sparse convolutions on frame differences, we approach the problem from a new perspective: low-bit quantization. We observe that residuals, as the difference in network activations between two neighboring frames, exhibit properties that make them highly quantizable. Based on this observation, we propose a novel quantization scheme for video networks coined as Residual Quantization. ResQ extends the standard, frame-by-frame, quantization scheme by incorporating temporal dependencies that lead to better performance in terms of accuracy vs. bit-width. Furthermore, we extend our model to dynamically adjust the bit-width proportional to the amount of changes in the video. We demonstrate the superiority of our model, against the standard quantization and existing efficient video perception models, using various architectures on semantic segmentation and human pose estimation benchmarks.
MuQ: Self-Supervised Music Representation Learning with Mel Residual Vector Quantization
Recent years have witnessed the success of foundation models pre-trained with self-supervised learning (SSL) in various music informatics understanding tasks, including music tagging, instrument classification, key detection, and more. In this paper, we propose a self-supervised music representation learning model for music understanding. Distinguished from previous studies adopting random projection or existing neural codec, the proposed model, named MuQ, is trained to predict tokens generated by Mel Residual Vector Quantization (Mel-RVQ). Our Mel-RVQ utilizes residual linear projection structure for Mel spectrum quantization to enhance the stability and efficiency of target extraction and lead to better performance. Experiments in a large variety of downstream tasks demonstrate that MuQ outperforms previous self-supervised music representation models with only 0.9K hours of open-source pre-training data. Scaling up the data to over 160K hours and adopting iterative training consistently improve the model performance. To further validate the strength of our model, we present MuQ-MuLan, a joint music-text embedding model based on contrastive learning, which achieves state-of-the-art performance in the zero-shot music tagging task on the MagnaTagATune dataset. Code and checkpoints are open source in https://github.com/tencent-ailab/MuQ.
From Imitation to Refinement -- Residual RL for Precise Visual Assembly
Behavior cloning (BC) currently stands as a dominant paradigm for learning real-world visual manipulation. However, in tasks that require locally corrective behaviors like multi-part assembly, learning robust policies purely from human demonstrations remains challenging. Reinforcement learning (RL) can mitigate these limitations by allowing policies to acquire locally corrective behaviors through task reward supervision and exploration. This paper explores the use of RL fine-tuning to improve upon BC-trained policies in precise manipulation tasks. We analyze and overcome technical challenges associated with using RL to directly train policy networks that incorporate modern architectural components like diffusion models and action chunking. We propose training residual policies on top of frozen BC-trained diffusion models using standard policy gradient methods and sparse rewards, an approach we call ResiP (Residual for Precise manipulation). Our experimental results demonstrate that this residual learning framework can significantly improve success rates beyond the base BC-trained models in high-precision assembly tasks by learning corrective actions. We also show that by combining ResiP with teacher-student distillation and visual domain randomization, our method can enable learning real-world policies for robotic assembly directly from RGB images. Find videos and code at https://residual-assembly.github.io.
Time-adaptive Video Frame Interpolation based on Residual Diffusion
In this work, we propose a new diffusion-based method for video frame interpolation (VFI), in the context of traditional hand-made animation. We introduce three main contributions: The first is that we explicitly handle the interpolation time in our model, which we also re-estimate during the training process, to cope with the particularly large variations observed in the animation domain, compared to natural videos; The second is that we adapt and generalize a diffusion scheme called ResShift recently proposed in the super-resolution community to VFI, which allows us to perform a very low number of diffusion steps (in the order of 10) to produce our estimates; The third is that we leverage the stochastic nature of the diffusion process to provide a pixel-wise estimate of the uncertainty on the interpolated frame, which could be useful to anticipate where the model may be wrong. We provide extensive comparisons with respect to state-of-the-art models and show that our model outperforms these models on animation videos. Our code is available at https://github.com/VicFonch/Multi-Input-Resshift-Diffusion-VFI.
COMPASS: Cross-embodiment Mobility Policy via Residual RL and Skill Synthesis
As robots are increasingly deployed in diverse application domains, generalizable cross-embodiment mobility policies are increasingly essential. While classical mobility stacks have proven effective on specific robot platforms, they pose significant challenges when scaling to new embodiments. Learning-based methods, such as imitation learning (IL) and reinforcement learning (RL), offer alternative solutions but suffer from covariate shift, sparse sampling in large environments, and embodiment-specific constraints. This paper introduces COMPASS, a novel workflow for developing cross-embodiment mobility policies by integrating IL, residual RL, and policy distillation. We begin with IL on a mobile robot, leveraging easily accessible teacher policies to train a foundational model that combines a world model with a mobility policy. Building on this base, we employ residual RL to fine-tune embodiment-specific policies, exploiting pre-trained representations to improve sampling efficiency in handling various physical constraints and sensor modalities. Finally, policy distillation merges these embodiment-specialist policies into a single robust cross-embodiment policy. We empirically demonstrate that COMPASS scales effectively across diverse robot platforms while maintaining adaptability to various environment configurations, achieving a generalist policy with a success rate approximately 5X higher than the pre-trained IL policy. The resulting framework offers an efficient, scalable solution for cross-embodiment mobility, enabling robots with different designs to navigate safely and efficiently in complex scenarios.
A Gated Residual Kolmogorov-Arnold Networks for Mixtures of Experts
This paper introduces KAMoE, a novel Mixture of Experts (MoE) framework based on Gated Residual Kolmogorov-Arnold Networks (GRKAN). We propose GRKAN as an alternative to the traditional gating function, aiming to enhance efficiency and interpretability in MoE modeling. Through extensive experiments on digital asset markets and real estate valuation, we demonstrate that KAMoE consistently outperforms traditional MoE architectures across various tasks and model types. Our results show that GRKAN exhibits superior performance compared to standard Gating Residual Networks, particularly in LSTM-based models for sequential tasks. We also provide insights into the trade-offs between model complexity and performance gains in MoE and KAMoE architectures.
RESPRECT: Speeding-up Multi-fingered Grasping with Residual Reinforcement Learning
Deep Reinforcement Learning (DRL) has proven effective in learning control policies using robotic grippers, but much less practical for solving the problem of grasping with dexterous hands -- especially on real robotic platforms -- due to the high dimensionality of the problem. In this work, we focus on the multi-fingered grasping task with the anthropomorphic hand of the iCub humanoid. We propose the RESidual learning with PREtrained CriTics (RESPRECT) method that, starting from a policy pre-trained on a large set of objects, can learn a residual policy to grasp a novel object in a fraction (sim 5 times faster) of the timesteps required to train a policy from scratch, without requiring any task demonstration. To our knowledge, this is the first Residual Reinforcement Learning (RRL) approach that learns a residual policy on top of another policy pre-trained with DRL. We exploit some components of the pre-trained policy during residual learning that further speed-up the training. We benchmark our results in the iCub simulated environment, and we show that RESPRECT can be effectively used to learn a multi-fingered grasping policy on the real iCub robot. The code to reproduce the experiments is released together with the paper with an open source license.
A Provable Defense for Deep Residual Networks
We present a training system, which can provably defend significantly larger neural networks than previously possible, including ResNet-34 and DenseNet-100. Our approach is based on differentiable abstract interpretation and introduces two novel concepts: (i) abstract layers for fine-tuning the precision and scalability of the abstraction, (ii) a flexible domain specific language (DSL) for describing training objectives that combine abstract and concrete losses with arbitrary specifications. Our training method is implemented in the DiffAI system.
A Pressure Ulcer Care System For Remote Medical Assistance: Residual U-Net with an Attention Model Based for Wound Area Segmentation
Increasing numbers of patients with disabilities or elderly people with mobility issues often suffer from a pressure ulcer. The affected areas need regular checks, but they have a difficulty in accessing a hospital. Some remote diagnosis systems are being used for them, but there are limitations in checking a patient's status regularly. In this paper, we present a remote medical assistant that can help pressure ulcer management with image processing techniques. The proposed system includes a mobile application with a deep learning model for wound segmentation and analysis. As there are not enough data to train the deep learning model, we make use of a pretrained model from a relevant domain and data augmentation that is appropriate for this task. First of all, an image preprocessing method using bilinear interpolation is used to resize images and normalize the images. Second, for data augmentation, we use rotation, reflection, and a watershed algorithm. Third, we use a pretrained deep learning model generated from skin wound images similar to pressure ulcer images. Finally, we added an attention module that can provide hints on the pressure ulcer image features. The resulting model provides an accuracy of 99.0%, an intersection over union (IoU) of 99.99%, and a dice similarity coefficient (DSC) of 93.4% for pressure ulcer segmentation, which is better than existing results.
HyTIP: Hybrid Temporal Information Propagation for Masked Conditional Residual Video Coding
Most frame-based learned video codecs can be interpreted as recurrent neural networks (RNNs) propagating reference information along the temporal dimension. This work revisits the limitations of the current approaches from an RNN perspective. The output-recurrence methods, which propagate decoded frames, are intuitive but impose dual constraints on the output decoded frames, leading to suboptimal rate-distortion performance. In contrast, the hidden-to-hidden connection approaches, which propagate latent features within the RNN, offer greater flexibility but require large buffer sizes. To address these issues, we propose HyTIP, a learned video coding framework that combines both mechanisms. Our hybrid buffering strategy uses explicit decoded frames and a small number of implicit latent features to achieve competitive coding performance. Experimental results show that our HyTIP outperforms the sole use of either output-recurrence or hidden-to-hidden approaches. Furthermore, it achieves comparable performance to state-of-the-art methods but with a much smaller buffer size, and outperforms VTM 17.0 (Low-delay B) in terms of PSNR-RGB and MS-SSIM-RGB. The source code of HyTIP is available at https://github.com/NYCU-MAPL/HyTIP.
Trajectory Bellman Residual Minimization: A Simple Value-Based Method for LLM Reasoning
Policy-based methods currently dominate reinforcement learning (RL) pipelines for large language model (LLM) reasoning, leaving value-based approaches largely unexplored. We revisit the classical paradigm of Bellman Residual Minimization and introduce Trajectory Bellman Residual Minimization (TBRM), an algorithm that naturally adapts this idea to LLMs, yielding a simple yet effective off-policy algorithm that optimizes a single trajectory-level Bellman objective using the model's own logits as Q-values. TBRM removes the need for critics, importance-sampling ratios, or clipping, and operates with only one rollout per prompt. We prove convergence to the near-optimal KL-regularized policy from arbitrary off-policy data via an improved change-of-trajectory-measure analysis. Experiments on standard mathematical-reasoning benchmarks show that TBRM consistently outperforms policy-based baselines, like PPO and GRPO, with comparable or lower computational and memory overhead. Our results indicate that value-based RL might be a principled and efficient alternative for enhancing reasoning capabilities in LLMs.
DocDiff: Document Enhancement via Residual Diffusion Models
Removing degradation from document images not only improves their visual quality and readability, but also enhances the performance of numerous automated document analysis and recognition tasks. However, existing regression-based methods optimized for pixel-level distortion reduction tend to suffer from significant loss of high-frequency information, leading to distorted and blurred text edges. To compensate for this major deficiency, we propose DocDiff, the first diffusion-based framework specifically designed for diverse challenging document enhancement problems, including document deblurring, denoising, and removal of watermarks and seals. DocDiff consists of two modules: the Coarse Predictor (CP), which is responsible for recovering the primary low-frequency content, and the High-Frequency Residual Refinement (HRR) module, which adopts the diffusion models to predict the residual (high-frequency information, including text edges), between the ground-truth and the CP-predicted image. DocDiff is a compact and computationally efficient model that benefits from a well-designed network architecture, an optimized training loss objective, and a deterministic sampling process with short time steps. Extensive experiments demonstrate that DocDiff achieves state-of-the-art (SOTA) performance on multiple benchmark datasets, and can significantly enhance the readability and recognizability of degraded document images. Furthermore, our proposed HRR module in pre-trained DocDiff is plug-and-play and ready-to-use, with only 4.17M parameters. It greatly sharpens the text edges generated by SOTA deblurring methods without additional joint training. Available codes: https://github.com/Royalvice/DocDiff
MobileTL: On-device Transfer Learning with Inverted Residual Blocks
Transfer learning on edge is challenging due to on-device limited resources. Existing work addresses this issue by training a subset of parameters or adding model patches. Developed with inference in mind, Inverted Residual Blocks (IRBs) split a convolutional layer into depthwise and pointwise convolutions, leading to more stacking layers, e.g., convolution, normalization, and activation layers. Though they are efficient for inference, IRBs require that additional activation maps are stored in memory for training weights for convolution layers and scales for normalization layers. As a result, their high memory cost prohibits training IRBs on resource-limited edge devices, and making them unsuitable in the context of transfer learning. To address this issue, we present MobileTL, a memory and computationally efficient on-device transfer learning method for models built with IRBs. MobileTL trains the shifts for internal normalization layers to avoid storing activation maps for the backward pass. Also, MobileTL approximates the backward computation of the activation layer (e.g., Hard-Swish and ReLU6) as a signed function which enables storing a binary mask instead of activation maps for the backward pass. MobileTL fine-tunes a few top blocks (close to output) rather than propagating the gradient through the whole network to reduce the computation cost. Our method reduces memory usage by 46% and 53% for MobileNetV2 and V3 IRBs, respectively. For MobileNetV3, we observe a 36% reduction in floating-point operations (FLOPs) when fine-tuning 5 blocks, while only incurring a 0.6% accuracy reduction on CIFAR10. Extensive experiments on multiple datasets demonstrate that our method is Pareto-optimal (best accuracy under given hardware constraints) compared to prior work in transfer learning for edge devices.
Uncertainty-Aware Unsupervised Image Deblurring with Deep Residual Prior
Non-blind deblurring methods achieve decent performance under the accurate blur kernel assumption. Since the kernel uncertainty (i.e. kernel error) is inevitable in practice, semi-blind deblurring is suggested to handle it by introducing the prior of the kernel (or induced) error. However, how to design a suitable prior for the kernel (or induced) error remains challenging. Hand-crafted prior, incorporating domain knowledge, generally performs well but may lead to poor performance when kernel (or induced) error is complex. Data-driven prior, which excessively depends on the diversity and abundance of training data, is vulnerable to out-of-distribution blurs and images. To address this challenge, we suggest a dataset-free deep residual prior for the kernel induced error (termed as residual) expressed by a customized untrained deep neural network, which allows us to flexibly adapt to different blurs and images in real scenarios. By organically integrating the respective strengths of deep priors and hand-crafted priors, we propose an unsupervised semi-blind deblurring model which recovers the latent image from the blurry image and inaccurate blur kernel. To tackle the formulated model, an efficient alternating minimization algorithm is developed. Extensive experiments demonstrate the favorable performance of the proposed method as compared to data-driven and model-driven methods in terms of image quality and the robustness to the kernel error.
Selective Residual M-Net for Real Image Denoising
Image restoration is a low-level vision task which is to restore degraded images to noise-free images. With the success of deep neural networks, the convolutional neural networks surpass the traditional restoration methods and become the mainstream in the computer vision area. To advance the performanceof denoising algorithms, we propose a blind real image denoising network (SRMNet) by employing a hierarchical architecture improved from U-Net. Specifically, we use a selective kernel with residual block on the hierarchical structure called M-Net to enrich the multi-scale semantic information. Furthermore, our SRMNet has competitive performance results on two synthetic and two real-world noisy datasets in terms of quantitative metrics and visual quality. The source code and pretrained model are available at https://github.com/TentativeGitHub/SRMNet.
On the Demystification of Knowledge Distillation: A Residual Network Perspective
Knowledge distillation (KD) is generally considered as a technique for performing model compression and learned-label smoothing. However, in this paper, we study and investigate the KD approach from a new perspective: we study its efficacy in training a deeper network without any residual connections. We find that in most of the cases, non-residual student networks perform equally or better than their residual versions trained on raw data without KD (baseline network). Surprisingly, in some cases, they surpass the accuracy of baseline networks even with the inferior teachers. After a certain depth of non-residual student network, the accuracy drop, coming from the removal of residual connections, is substantial, and training with KD boosts the accuracy of the student up to a great extent; however, it does not fully recover the accuracy drop. Furthermore, we observe that the conventional teacher-student view of KD is incomplete and does not adequately explain our findings. We propose a novel interpretation of KD with the Trainee-Mentor hypothesis, which provides a holistic view of KD. We also present two viewpoints, loss landscape, and feature reuse, to explain the interplay between residual connections and KD. We substantiate our claims through extensive experiments on residual networks.
ManipTrans: Efficient Dexterous Bimanual Manipulation Transfer via Residual Learning
Human hands play a central role in interacting, motivating increasing research in dexterous robotic manipulation. Data-driven embodied AI algorithms demand precise, large-scale, human-like manipulation sequences, which are challenging to obtain with conventional reinforcement learning or real-world teleoperation. To address this, we introduce ManipTrans, a novel two-stage method for efficiently transferring human bimanual skills to dexterous robotic hands in simulation. ManipTrans first pre-trains a generalist trajectory imitator to mimic hand motion, then fine-tunes a specific residual module under interaction constraints, enabling efficient learning and accurate execution of complex bimanual tasks. Experiments show that ManipTrans surpasses state-of-the-art methods in success rate, fidelity, and efficiency. Leveraging ManipTrans, we transfer multiple hand-object datasets to robotic hands, creating DexManipNet, a large-scale dataset featuring previously unexplored tasks like pen capping and bottle unscrewing. DexManipNet comprises 3.3K episodes of robotic manipulation and is easily extensible, facilitating further policy training for dexterous hands and enabling real-world deployments.
AutoLUT: LUT-Based Image Super-Resolution with Automatic Sampling and Adaptive Residual Learning
In recent years, the increasing popularity of Hi-DPI screens has driven a rising demand for high-resolution images. However, the limited computational power of edge devices poses a challenge in deploying complex super-resolution neural networks, highlighting the need for efficient methods. While prior works have made significant progress, they have not fully exploited pixel-level information. Moreover, their reliance on fixed sampling patterns limits both accuracy and the ability to capture fine details in low-resolution images. To address these challenges, we introduce two plug-and-play modules designed to capture and leverage pixel information effectively in Look-Up Table (LUT) based super-resolution networks. Our method introduces Automatic Sampling (AutoSample), a flexible LUT sampling approach where sampling weights are automatically learned during training to adapt to pixel variations and expand the receptive field without added inference cost. We also incorporate Adaptive Residual Learning (AdaRL) to enhance inter-layer connections, enabling detailed information flow and improving the network's ability to reconstruct fine details. Our method achieves significant performance improvements on both MuLUT and SPF-LUT while maintaining similar storage sizes. Specifically, for MuLUT, we achieve a PSNR improvement of approximately +0.20 dB improvement on average across five datasets. For SPF-LUT, with more than a 50% reduction in storage space and about a 2/3 reduction in inference time, our method still maintains performance comparable to the original. The code is available at https://github.com/SuperKenVery/AutoLUT.
Controlling the Latent Diffusion Model for Generative Image Shadow Removal via Residual Generation
Large-scale generative models have achieved remarkable advancements in various visual tasks, yet their application to shadow removal in images remains challenging. These models often generate diverse, realistic details without adequate focus on fidelity, failing to meet the crucial requirements of shadow removal, which necessitates precise preservation of image content. In contrast to prior approaches that aimed to regenerate shadow-free images from scratch, this paper utilizes diffusion models to generate and refine image residuals. This strategy fully uses the inherent detailed information within shadowed images, resulting in a more efficient and faithful reconstruction of shadow-free content. Additionally, to revent the accumulation of errors during the generation process, a crosstimestep self-enhancement training strategy is proposed. This strategy leverages the network itself to augment the training data, not only increasing the volume of data but also enabling the network to dynamically correct its generation trajectory, ensuring a more accurate and robust output. In addition, to address the loss of original details in the process of image encoding and decoding of large generative models, a content-preserved encoder-decoder structure is designed with a control mechanism and multi-scale skip connections to achieve high-fidelity shadow-free image reconstruction. Experimental results demonstrate that the proposed method can reproduce high-quality results based on a large latent diffusion prior and faithfully preserve the original contents in shadow regions.
FDGATII : Fast Dynamic Graph Attention with Initial Residual and Identity Mapping
While Graph Neural Networks have gained popularity in multiple domains, graph-structured input remains a major challenge due to (a) over-smoothing, (b) noisy neighbours (heterophily), and (c) the suspended animation problem. To address all these problems simultaneously, we propose a novel graph neural network FDGATII, inspired by attention mechanism's ability to focus on selective information supplemented with two feature preserving mechanisms. FDGATII combines Initial Residuals and Identity Mapping with the more expressive dynamic self-attention to handle noise prevalent from the neighbourhoods in heterophilic data sets. By using sparse dynamic attention, FDGATII is inherently parallelizable in design, whist efficient in operation; thus theoretically able to scale to arbitrary graphs with ease. Our approach has been extensively evaluated on 7 datasets. We show that FDGATII outperforms GAT and GCN based benchmarks in accuracy and performance on fully supervised tasks, obtaining state-of-the-art results on Chameleon and Cornell datasets with zero domain-specific graph pre-processing, and demonstrate its versatility and fairness.
Deep Impression: Audiovisual Deep Residual Networks for Multimodal Apparent Personality Trait Recognition
Here, we develop an audiovisual deep residual network for multimodal apparent personality trait recognition. The network is trained end-to-end for predicting the Big Five personality traits of people from their videos. That is, the network does not require any feature engineering or visual analysis such as face detection, face landmark alignment or facial expression recognition. Recently, the network won the third place in the ChaLearn First Impressions Challenge with a test accuracy of 0.9109.
Rethinking Decoder Design: Improving Biomarker Segmentation Using Depth-to-Space Restoration and Residual Linear Attention
Segmenting biomarkers in medical images is crucial for various biotech applications. Despite advances, Transformer and CNN based methods often struggle with variations in staining and morphology, limiting feature extraction. In medical image segmentation, where datasets often have limited sample availability, recent state-of-the-art (SOTA) methods achieve higher accuracy by leveraging pre-trained encoders, whereas end-to-end methods tend to underperform. This is due to challenges in effectively transferring rich multiscale features from encoders to decoders, as well as limitations in decoder efficiency. To address these issues, we propose an architecture that captures multi-scale local and global contextual information and a novel decoder design, which effectively integrates features from the encoder, emphasizes important channels and regions, and reconstructs spatial dimensions to enhance segmentation accuracy. Our method, compatible with various encoders, outperforms SOTA methods, as demonstrated by experiments on four datasets and ablation studies. Specifically, our method achieves absolute performance gains of 2.76% on MoNuSeg, 3.12% on DSB, 2.87% on Electron Microscopy, and 4.03% on TNBC datasets compared to existing SOTA methods. Code: https://github.com/saadwazir/MCADS-Decoder
Accelerated Training through Iterative Gradient Propagation Along the Residual Path
Despite being the cornerstone of deep learning, backpropagation is criticized for its inherent sequentiality, which can limit the scalability of very deep models. Such models faced convergence issues due to vanishing gradient, later resolved using residual connections. Variants of these are now widely used in modern architecture. However, the computational cost of backpropagation remains a major burden, accounting for most of the training time. Taking advantage of residual-like architectural designs, we introduce Highway backpropagation, a parallelizable iterative algorithm that approximates backpropagation, by alternatively i) accumulating the gradient estimates along the residual path, and ii) backpropagating them through every layer in parallel. This algorithm is naturally derived from a decomposition of the gradient as the sum of gradients flowing through all paths and is adaptable to a diverse set of common architectures, ranging from ResNets and Transformers to recurrent neural networks. Through an extensive empirical study on a large selection of tasks and models, we evaluate Highway-BP and show that major speedups can be achieved with minimal performance degradation.
BiPFT: Binary Pre-trained Foundation Transformer with Low-rank Estimation of Binarization Residual Polynomials
Pretrained foundation models offer substantial benefits for a wide range of downstream tasks, which can be one of the most potential techniques to access artificial general intelligence. However, scaling up foundation transformers for maximal task-agnostic knowledge has brought about computational challenges, especially on resource-limited devices such as mobiles. This work proposes the first Binary Pretrained Foundation Transformer (BiPFT) for natural language understanding (NLU) tasks, which remarkably saves 56 times operations and 28 times memory. In contrast to previous task-specific binary transformers, BiPFT exhibits a substantial enhancement in the learning capabilities of binary neural networks (BNNs), promoting BNNs into the era of pre-training. Benefiting from extensive pretraining data, we further propose a data-driven binarization method. Specifically, we first analyze the binarization error in self-attention operations and derive the polynomials of binarization error. To simulate full-precision self-attention, we define binarization error as binarization residual polynomials, and then introduce low-rank estimators to model these polynomials. Extensive experiments validate the effectiveness of BiPFTs, surpassing task-specific baseline by 15.4% average performance on the GLUE benchmark. BiPFT also demonstrates improved robustness to hyperparameter changes, improved optimization efficiency, and reduced reliance on downstream distillation, which consequently generalize on various NLU tasks and simplify the downstream pipeline of BNNs. Our code and pretrained models are publicly available at https://github.com/Xingrun-Xing/BiPFT.
Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise
Recently, research on denoising diffusion models has expanded its application to the field of image restoration. Traditional diffusion-based image restoration methods utilize degraded images as conditional input to effectively guide the reverse generation process, without modifying the original denoising diffusion process. However, since the degraded images already include low-frequency information, starting from Gaussian white noise will result in increased sampling steps. We propose Resfusion, a general framework that incorporates the residual term into the diffusion forward process, starting the reverse process directly from the noisy degraded images. The form of our inference process is consistent with the DDPM. We introduced a weighted residual noise, named resnoise, as the prediction target and explicitly provide the quantitative relationship between the residual term and the noise term in resnoise. By leveraging a smooth equivalence transformation, Resfusion determine the optimal acceleration step and maintains the integrity of existing noise schedules, unifying the training and inference processes. The experimental results demonstrate that Resfusion exhibits competitive performance on ISTD dataset, LOL dataset and Raindrop dataset with only five sampling steps. Furthermore, Resfusion can be easily applied to image generation and emerges with strong versatility. Our code and model are available at https://github.com/nkicsl/Resfusion.
Res-VMamba: Fine-Grained Food Category Visual Classification Using Selective State Space Models with Deep Residual Learning
Food classification is the foundation for developing food vision tasks and plays a key role in the burgeoning field of computational nutrition. Due to the complexity of food requiring fine-grained classification, recent academic research mainly modifies Convolutional Neural Networks (CNNs) and/or Vision Transformers (ViTs) to perform food category classification. However, to learn fine-grained features, the CNN backbone needs additional structural design, whereas ViT, containing the self-attention module, has increased computational complexity. In recent months, a new Sequence State Space (S4) model, through a Selection mechanism and computation with a Scan (S6), colloquially termed Mamba, has demonstrated superior performance and computation efficiency compared to the Transformer architecture. The VMamba model, which incorporates the Mamba mechanism into image tasks (such as classification), currently establishes the state-of-the-art (SOTA) on the ImageNet dataset. In this research, we introduce an academically underestimated food dataset CNFOOD-241, and pioneer the integration of a residual learning framework within the VMamba model to concurrently harness both global and local state features inherent in the original VMamba architectural design. The research results show that VMamba surpasses current SOTA models in fine-grained and food classification. The proposed Res-VMamba further improves the classification accuracy to 79.54\% without pretrained weight. Our findings elucidate that our proposed methodology establishes a new benchmark for SOTA performance in food recognition on the CNFOOD-241 dataset. The code can be obtained on GitHub: https://github.com/ChiShengChen/ResVMamba.
Deep Spatiotemporal Clutter Filtering of Transthoracic Echocardiographic Images: Leveraging Contextual Attention and Residual Learning
This study presents a deep convolutional autoencoder network for filtering reverberation clutter from transthoracic echocardiographic (TTE) image sequences. Given the spatiotemporal nature of this type of clutter, the filtering network employs 3D convolutional layers to suppress it throughout the cardiac cycle. The design of the network incorporates two key features that contribute to the effectiveness of the filter: 1) an attention mechanism for focusing on cluttered regions and leveraging contextual information, and 2) residual learning for preserving fine image structures. To train the network, a diverse set of artifact patterns was simulated and superimposed onto ultra-realistic synthetic TTE sequences from six ultrasound vendors, generating input for the filtering network. The artifact-free sequences served as ground-truth. Performance of the filtering network was evaluated using unseen synthetic and in vivo artifactual sequences. Results from the in vivo dataset confirmed the network's strong generalization capabilities, despite being trained solely on synthetic data and simulated artifacts. The suitability of the filtered sequences for downstream processing was assessed by computing segmental strain curves. A significant reduction in the discrepancy between strain profiles computed from cluttered and clutter-free segments was observed after filtering the cluttered sequences with the proposed network. The trained network processes a TTE sequence in a fraction of a second, enabling real-time clutter filtering and potentially improving the precision of clinically relevant indices derived from TTE sequences. The source code of the proposed method and example video files of the filtering results are available at: https://github.com/MahdiTabassian/Deep-Clutter-Filtering/tree/main{https://github.com/MahdiTabassian/Deep-Clutter-Filtering/tree/main}.
S'MoRE: Structural Mixture of Residual Experts for LLM Fine-tuning
Fine-tuning pre-trained large language models (LLMs) presents a dual challenge of balancing parameter efficiency and model capacity. Existing methods like low-rank adaptations (LoRA) are efficient but lack flexibility, while Mixture-of-Experts (MoE) architectures enhance model capacity at the cost of more & under-utilized parameters. To address these limitations, we propose Structural Mixture of Residual Experts (S'MoRE), a novel framework that seamlessly integrates the efficiency of LoRA with the flexibility of MoE. Specifically, S'MoRE employs hierarchical low-rank decomposition of expert weights, yielding residuals of varying orders interconnected in a multi-layer structure. By routing input tokens through sub-trees of residuals, S'MoRE emulates the capacity of many experts by instantiating and assembling just a few low-rank matrices. We craft the inter-layer propagation of S'MoRE's residuals as a special type of Graph Neural Network (GNN), and prove that under similar parameter budget, S'MoRE improves "structural flexibility" of traditional MoE (or Mixture-of-LoRA) by exponential order. Comprehensive theoretical analysis and empirical results demonstrate that S'MoRE achieves superior fine-tuning performance, offering a transformative approach for efficient LLM adaptation.
ESC: Efficient Speech Coding with Cross-Scale Residual Vector Quantized Transformers
Existing neural audio codecs usually sacrifice computational complexity for audio quality. They build the feature transformation layers mainly on convolutional blocks, which are not inherently appropriate for capturing local redundancies of audio signals. As compensation, either adversarial losses from a discriminator or a large number of model parameters are required to improve the codec. To that end, we propose Efficient Speech Codec (ESC), a lightweight parameter-efficient codec laid on cross-scale residual vector quantization and transformers. Our model leverages mirrored hierarchical window-attention transformer blocks and performs step-wise decoding from coarse-to-fine feature representations. To enhance codebook utilization, we design a learning paradigm that involves a pre-training stage to assist with codec training. Extensive results show that ESC can achieve high audio quality with much lower complexity, which is a prospective alternative in place of existing codecs.
Efficient Diffusion Model for Image Restoration by Residual Shifting
While diffusion-based image restoration (IR) methods have achieved remarkable success, they are still limited by the low inference speed attributed to the necessity of executing hundreds or even thousands of sampling steps. Existing acceleration sampling techniques, though seeking to expedite the process, inevitably sacrifice performance to some extent, resulting in over-blurry restored outcomes. To address this issue, this study proposes a novel and efficient diffusion model for IR that significantly reduces the required number of diffusion steps. Our method avoids the need for post-acceleration during inference, thereby avoiding the associated performance deterioration. Specifically, our proposed method establishes a Markov chain that facilitates the transitions between the high-quality and low-quality images by shifting their residuals, substantially improving the transition efficiency. A carefully formulated noise schedule is devised to flexibly control the shifting speed and the noise strength during the diffusion process. Extensive experimental evaluations demonstrate that the proposed method achieves superior or comparable performance to current state-of-the-art methods on three classical IR tasks, namely image super-resolution, image inpainting, and blind face restoration, \textbf{even only with four sampling steps}. Our code and model are publicly available at https://github.com/zsyOAOA/ResShift.
Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network
In recent years, deep learning methods have been successfully applied to single-image super-resolution tasks. Despite their great performances, deep learning methods cannot be easily applied to real-world applications due to the requirement of heavy computation. In this paper, we address this issue by proposing an accurate and lightweight deep network for image super-resolution. In detail, we design an architecture that implements a cascading mechanism upon a residual network. We also present variant models of the proposed cascading residual network to further improve efficiency. Our extensive experiments show that even with much fewer parameters and operations, our models achieve performance comparable to that of state-of-the-art methods.
CN-SBM: Categorical Block Modelling For Primary and Residual Copy Number Variation
Cancer is a genetic disorder whose clonal evolution can be monitored by tracking noisy genome-wide copy number variants. We introduce the Copy Number Stochastic Block Model (CN-SBM), a probabilistic framework that jointly clusters samples and genomic regions based on discrete copy number states using a bipartite categorical block model. Unlike models relying on Gaussian or Poisson assumptions, CN-SBM respects the discrete nature of CNV calls and captures subpopulation-specific patterns through block-wise structure. Using a two-stage approach, CN-SBM decomposes CNV data into primary and residual components, enabling detection of both large-scale chromosomal alterations and finer aberrations. We derive a scalable variational inference algorithm for application to large cohorts and high-resolution data. Benchmarks on simulated and real datasets show improved model fit over existing methods. Applied to TCGA low-grade glioma data, CN-SBM reveals clinically relevant subtypes and structured residual variation, aiding patient stratification in survival analysis. These results establish CN-SBM as an interpretable, scalable framework for CNV analysis with direct relevance for tumor heterogeneity and prognosis.
Chain of LoRA: Efficient Fine-tuning of Language Models via Residual Learning
Fine-tuning is the primary methodology for tailoring pre-trained large language models to specific tasks. As the model's scale and the diversity of tasks expand, parameter-efficient fine-tuning methods are of paramount importance. One of the most widely used family of methods is low-rank adaptation (LoRA) and its variants. LoRA encodes weight update as the product of two low-rank matrices. Despite its advantages, LoRA falls short of full-parameter fine-tuning in terms of generalization error for certain tasks. We introduce Chain of LoRA (COLA), an iterative optimization framework inspired by the Frank-Wolfe algorithm, to bridge the gap between LoRA and full parameter fine-tuning, without incurring additional computational costs or memory overheads. COLA employs a residual learning procedure where it merges learned LoRA modules into the pre-trained language model parameters and re-initilize optimization for new born LoRA modules. We provide theoretical convergence guarantees as well as empirical results to validate the effectiveness of our algorithm. Across various models (OPT and llama-2) and seven benchmarking tasks, we demonstrate that COLA can consistently outperform LoRA without additional computational or memory costs.
Improving Reasoning Performance in Large Language Models via Representation Engineering
Recent advancements in large language models (LLMs) have resulted in increasingly anthropomorphic language concerning the ability of LLMs to reason. Whether reasoning in LLMs should be understood to be inherently different is, however, widely debated. We propose utilizing a representation engineering approach wherein model activations are read from the residual stream of an LLM when processing a reasoning task. The activations are used to derive a control vector that is applied to the model as an inference-time intervention, modulating the representational space of the model, to improve performance on the specified task. We publish the code for deriving control vectors and analyzing model representations. The method allows us to improve performance on reasoning benchmarks and assess how control vectors influence the final logit distribution of a model via metrics such as KL divergence and entropy. We apply control vectors to Mistral-7B-Instruct and a range of Pythia models on an inductive, a deductive and mathematical reasoning task. We show that an LLM can, to a certain degree, be controlled to improve its perceived reasoning ability by modulating activations. The intervention is dependent upon the ability to reliably extract the model's typical state when correctly solving a task. Our results suggest that reasoning performance can be modulated in the same manner as other information-processing tasks performed by LLMs and demonstrate that we are capable of improving performance on specific tasks via a simple intervention on the residual stream with no additional training.
ResNet strikes back: An improved training procedure in timm
The influential Residual Networks designed by He et al. remain the gold-standard architecture in numerous scientific publications. They typically serve as the default architecture in studies, or as baselines when new architectures are proposed. Yet there has been significant progress on best practices for training neural networks since the inception of the ResNet architecture in 2015. Novel optimization & data-augmentation have increased the effectiveness of the training recipes. In this paper, we re-evaluate the performance of the vanilla ResNet-50 when trained with a procedure that integrates such advances. We share competitive training settings and pre-trained models in the timm open-source library, with the hope that they will serve as better baselines for future work. For instance, with our more demanding training setting, a vanilla ResNet-50 reaches 80.4% top-1 accuracy at resolution 224x224 on ImageNet-val without extra data or distillation. We also report the performance achieved with popular models with our training procedure.
CostFormer:Cost Transformer for Cost Aggregation in Multi-view Stereo
The core of Multi-view Stereo(MVS) is the matching process among reference and source pixels. Cost aggregation plays a significant role in this process, while previous methods focus on handling it via CNNs. This may inherit the natural limitation of CNNs that fail to discriminate repetitive or incorrect matches due to limited local receptive fields. To handle the issue, we aim to involve Transformer into cost aggregation. However, another problem may occur due to the quadratically growing computational complexity caused by Transformer, resulting in memory overflow and inference latency. In this paper, we overcome these limits with an efficient Transformer-based cost aggregation network, namely CostFormer. The Residual Depth-Aware Cost Transformer(RDACT) is proposed to aggregate long-range features on cost volume via self-attention mechanisms along the depth and spatial dimensions. Furthermore, Residual Regression Transformer(RRT) is proposed to enhance spatial attention. The proposed method is a universal plug-in to improve learning-based MVS methods.
Hierarchical Residuals Exploit Brain-Inspired Compositionality
We present Hierarchical Residual Networks (HiResNets), deep convolutional neural networks with long-range residual connections between layers at different hierarchical levels. HiResNets draw inspiration on the organization of the mammalian brain by replicating the direct connections from subcortical areas to the entire cortical hierarchy. We show that the inclusion of hierarchical residuals in several architectures, including ResNets, results in a boost in accuracy and faster learning. A detailed analysis of our models reveals that they perform hierarchical compositionality by learning feature maps relative to the compressed representations provided by the skip connections.
Efficient Speech Language Modeling via Energy Distance in Continuous Latent Space
We introduce SLED, an alternative approach to speech language modeling by encoding speech waveforms into sequences of continuous latent representations and modeling them autoregressively using an energy distance objective. The energy distance offers an analytical measure of the distributional gap by contrasting simulated and target samples, enabling efficient training to capture the underlying continuous autoregressive distribution. By bypassing reliance on residual vector quantization, SLED avoids discretization errors and eliminates the need for the complicated hierarchical architectures common in existing speech language models. It simplifies the overall modeling pipeline while preserving the richness of speech information and maintaining inference efficiency. Empirical results demonstrate that SLED achieves strong performance in both zero-shot and streaming speech synthesis, showing its potential for broader applications in general-purpose speech language models.
AdaTT: Adaptive Task-to-Task Fusion Network for Multitask Learning in Recommendations
Multi-task learning (MTL) aims to enhance the performance and efficiency of machine learning models by simultaneously training them on multiple tasks. However, MTL research faces two challenges: 1) effectively modeling the relationships between tasks to enable knowledge sharing, and 2) jointly learning task-specific and shared knowledge. In this paper, we present a novel model called Adaptive Task-to-Task Fusion Network (AdaTT) to address both challenges. AdaTT is a deep fusion network built with task-specific and optional shared fusion units at multiple levels. By leveraging a residual mechanism and a gating mechanism for task-to-task fusion, these units adaptively learn both shared knowledge and task-specific knowledge. To evaluate AdaTT's performance, we conduct experiments on a public benchmark and an industrial recommendation dataset using various task groups. Results demonstrate AdaTT significantly outperforms existing state-of-the-art baselines. Furthermore, our end-to-end experiments reveal that the model exhibits better performance compared to alternatives.
Rethinking Performance Gains in Image Dehazing Networks
Image dehazing is an active topic in low-level vision, and many image dehazing networks have been proposed with the rapid development of deep learning. Although these networks' pipelines work fine, the key mechanism to improving image dehazing performance remains unclear. For this reason, we do not target to propose a dehazing network with fancy modules; rather, we make minimal modifications to popular U-Net to obtain a compact dehazing network. Specifically, we swap out the convolutional blocks in U-Net for residual blocks with the gating mechanism, fuse the feature maps of main paths and skip connections using the selective kernel, and call the resulting U-Net variant gUNet. As a result, with a significantly reduced overhead, gUNet is superior to state-of-the-art methods on multiple image dehazing datasets. Finally, we verify these key designs to the performance gain of image dehazing networks through extensive ablation studies.
WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections
Novel View Synthesis (NVS) from unconstrained photo collections is challenging in computer graphics. Recently, 3D Gaussian Splatting (3DGS) has shown promise for photorealistic and real-time NVS of static scenes. Building on 3DGS, we propose an efficient point-based differentiable rendering framework for scene reconstruction from photo collections. Our key innovation is a residual-based spherical harmonic coefficients transfer module that adapts 3DGS to varying lighting conditions and photometric post-processing. This lightweight module can be pre-computed and ensures efficient gradient propagation from rendered images to 3D Gaussian attributes. Additionally, we observe that the appearance encoder and the transient mask predictor, the two most critical parts of NVS from unconstrained photo collections, can be mutually beneficial. We introduce a plug-and-play lightweight spatial attention module to simultaneously predict transient occluders and latent appearance representation for each image. After training and preprocessing, our method aligns with the standard 3DGS format and rendering pipeline, facilitating seamlessly integration into various 3DGS applications. Extensive experiments on diverse datasets show our approach outperforms existing approaches on the rendering quality of novel view and appearance synthesis with high converge and rendering speed.
Structured World Representations in Maze-Solving Transformers
Transformer models underpin many recent advances in practical machine learning applications, yet understanding their internal behavior continues to elude researchers. Given the size and complexity of these models, forming a comprehensive picture of their inner workings remains a significant challenge. To this end, we set out to understand small transformer models in a more tractable setting: that of solving mazes. In this work, we focus on the abstractions formed by these models and find evidence for the consistent emergence of structured internal representations of maze topology and valid paths. We demonstrate this by showing that the residual stream of only a single token can be linearly decoded to faithfully reconstruct the entire maze. We also find that the learned embeddings of individual tokens have spatial structure. Furthermore, we take steps towards deciphering the circuity of path-following by identifying attention heads (dubbed adjacency heads), which are implicated in finding valid subsequent tokens.
Interpreting the Second-Order Effects of Neurons in CLIP
We interpret the function of individual neurons in CLIP by automatically describing them using text. Analyzing the direct effects (i.e. the flow from a neuron through the residual stream to the output) or the indirect effects (overall contribution) fails to capture the neurons' function in CLIP. Therefore, we present the "second-order lens", analyzing the effect flowing from a neuron through the later attention heads, directly to the output. We find that these effects are highly selective: for each neuron, the effect is significant for <2% of the images. Moreover, each effect can be approximated by a single direction in the text-image space of CLIP. We describe neurons by decomposing these directions into sparse sets of text representations. The sets reveal polysemantic behavior - each neuron corresponds to multiple, often unrelated, concepts (e.g. ships and cars). Exploiting this neuron polysemy, we mass-produce "semantic" adversarial examples by generating images with concepts spuriously correlated to the incorrect class. Additionally, we use the second-order effects for zero-shot segmentation and attribute discovery in images. Our results indicate that a scalable understanding of neurons can be used for model deception and for introducing new model capabilities.
3D representation in 512-Byte:Variational tokenizer is the key for autoregressive 3D generation
Autoregressive transformers have revolutionized high-fidelity image generation. One crucial ingredient lies in the tokenizer, which compresses high-resolution image patches into manageable discrete tokens with a scanning or hierarchical order suitable for large language models. Extending these tokenizers to 3D generation, however, presents a significant challenge: unlike image patches that naturally exhibit spatial sequence and multi-scale relationships, 3D data lacks an inherent order, making it difficult to compress into fewer tokens while preserving structural details. To address this, we introduce the Variational Tokenizer (VAT), which transforms unordered 3D data into compact latent tokens with an implicit hierarchy, suited for efficient and high-fidelity coarse-to-fine autoregressive modeling. VAT begins with an in-context transformer, which compress numerous unordered 3D features into a reduced token set with minimal information loss. This latent space is then mapped to a Gaussian distribution for residual quantization, with token counts progressively increasing across scales. In this way, tokens at different scales naturally establish the interconnections by allocating themselves into different subspaces within the same Gaussian distribution, facilitating discrete modeling of token relationships across scales. During the decoding phase, a high-resolution triplane is utilized to convert these compact latent tokens into detailed 3D shapes. Extensive experiments demonstrate that VAT enables scalable and efficient 3D generation, outperforming existing methods in quality, efficiency, and generalization. Remarkably, VAT achieves up to a 250x compression, reducing a 1MB mesh to just 3.9KB with a 96% F-score, and can further compress to 256 int8 tokens, achieving a 2000x reduction while maintaining a 92% F-score.
Metropolis Theorem and Its Applications in Single Image Detail Enhancement
Traditional image detail enhancement is local filter-based or global filter-based. In both approaches, the original image is first divided into the base layer and the detail layer, and then the enhanced image is obtained by amplifying the detail layer. Our method is different, and its innovation lies in the special way to get the image detail layer. The detail layer in our method is obtained by updating the residual features, and the updating mechanism is usually based on searching and matching similar patches. However, due to the diversity of image texture features, perfect matching is often not possible. In this paper, the process of searching and matching is treated as a thermodynamic process, where the Metropolis theorem can minimize the internal energy and get the global optimal solution of this task, that is, to find a more suitable feature for a better detail enhancement performance. Extensive experiments have proven that our algorithm can achieve better results in quantitative metrics testing and visual effects evaluation. The source code can be obtained from the link.
Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images
Motion artefacts in magnetic resonance brain images can have a strong impact on diagnostic confidence. The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis. Motion artefacts can alter the delineation of structures such as the brain, lesions or tumours and may require a repeat scan. Otherwise, an inaccurate (e.g. correct pathology but wrong severity) or incorrect diagnosis (e.g. wrong pathology) may occur. "Image quality assessment" as a fast, automated step right after scanning can assist in deciding if the acquired images are diagnostically sufficient. An automated image quality assessment based on the structural similarity index (SSIM) regression through a residual neural network is proposed in this work. Additionally, a classification into different groups - by subdividing with SSIM ranges - is evaluated. Importantly, this method predicts SSIM values of an input image in the absence of a reference ground truth image. The networks were able to detect motion artefacts, and the best performance for the regression and classification task has always been achieved with ResNet-18 with contrast augmentation. The mean and standard deviation of residuals' distribution were mu=-0.0009 and sigma=0.0139, respectively. Whilst for the classification task in 3, 5 and 10 classes, the best accuracies were 97, 95 and 89\%, respectively. The results show that the proposed method could be a tool for supporting neuro-radiologists and radiographers in evaluating image quality quickly.
FractalNet: Ultra-Deep Neural Networks without Residuals
We introduce a design strategy for neural network macro-architecture based on self-similarity. Repeated application of a simple expansion rule generates deep networks whose structural layouts are precisely truncated fractals. These networks contain interacting subpaths of different lengths, but do not include any pass-through or residual connections; every internal signal is transformed by a filter and nonlinearity before being seen by subsequent layers. In experiments, fractal networks match the excellent performance of standard residual networks on both CIFAR and ImageNet classification tasks, thereby demonstrating that residual representations may not be fundamental to the success of extremely deep convolutional neural networks. Rather, the key may be the ability to transition, during training, from effectively shallow to deep. We note similarities with student-teacher behavior and develop drop-path, a natural extension of dropout, to regularize co-adaptation of subpaths in fractal architectures. Such regularization allows extraction of high-performance fixed-depth subnetworks. Additionally, fractal networks exhibit an anytime property: shallow subnetworks provide a quick answer, while deeper subnetworks, with higher latency, provide a more accurate answer.
QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs
We introduce QuaRot, a new Quantization scheme based on Rotations, which is able to quantize LLMs end-to-end, including all weights, activations, and KV cache in 4 bits. QuaRot rotates LLMs in a way that removes outliers from the hidden state without changing the output, making quantization easier. This computational invariance is applied to the hidden state (residual) of the LLM, as well as to the activations of the feed-forward components, aspects of the attention mechanism and to the KV cache. The result is a quantized model where all matrix multiplications are performed in 4-bits, without any channels identified for retention in higher precision. Our quantized LLaMa2-70B model has losses of at most 0.29 WikiText-2 perplexity and retains 99% of the zero-shot performance. Code is available at: https://github.com/spcl/QuaRot.
ResEmoteNet: Bridging Accuracy and Loss Reduction in Facial Emotion Recognition
The human face is a silent communicator, expressing emotions and thoughts through its facial expressions. With the advancements in computer vision in recent years, facial emotion recognition technology has made significant strides, enabling machines to decode the intricacies of facial cues. In this work, we propose ResEmoteNet, a novel deep learning architecture for facial emotion recognition designed with the combination of Convolutional, Squeeze-Excitation (SE) and Residual Networks. The inclusion of SE block selectively focuses on the important features of the human face, enhances the feature representation and suppresses the less relevant ones. This helps in reducing the loss and enhancing the overall model performance. We also integrate the SE block with three residual blocks that help in learning more complex representation of the data through deeper layers. We evaluated ResEmoteNet on four open-source databases: FER2013, RAF-DB, AffectNet-7 and ExpW, achieving accuracies of 79.79%, 94.76%, 72.39% and 75.67% respectively. The proposed network outperforms state-of-the-art models across all four databases. The source code for ResEmoteNet is available at https://github.com/ArnabKumarRoy02/ResEmoteNet.
SkipNet: Learning Dynamic Routing in Convolutional Networks
While deeper convolutional networks are needed to achieve maximum accuracy in visual perception tasks, for many inputs shallower networks are sufficient. We exploit this observation by learning to skip convolutional layers on a per-input basis. We introduce SkipNet, a modified residual network, that uses a gating network to selectively skip convolutional blocks based on the activations of the previous layer. We formulate the dynamic skipping problem in the context of sequential decision making and propose a hybrid learning algorithm that combines supervised learning and reinforcement learning to address the challenges of non-differentiable skipping decisions. We show SkipNet reduces computation by 30-90% while preserving the accuracy of the original model on four benchmark datasets and outperforms the state-of-the-art dynamic networks and static compression methods. We also qualitatively evaluate the gating policy to reveal a relationship between image scale and saliency and the number of layers skipped.
LightM-UNet: Mamba Assists in Lightweight UNet for Medical Image Segmentation
UNet and its variants have been widely used in medical image segmentation. However, these models, especially those based on Transformer architectures, pose challenges due to their large number of parameters and computational loads, making them unsuitable for mobile health applications. Recently, State Space Models (SSMs), exemplified by Mamba, have emerged as competitive alternatives to CNN and Transformer architectures. Building upon this, we employ Mamba as a lightweight substitute for CNN and Transformer within UNet, aiming at tackling challenges stemming from computational resource limitations in real medical settings. To this end, we introduce the Lightweight Mamba UNet (LightM-UNet) that integrates Mamba and UNet in a lightweight framework. Specifically, LightM-UNet leverages the Residual Vision Mamba Layer in a pure Mamba fashion to extract deep semantic features and model long-range spatial dependencies, with linear computational complexity. Extensive experiments conducted on two real-world 2D/3D datasets demonstrate that LightM-UNet surpasses existing state-of-the-art literature. Notably, when compared to the renowned nnU-Net, LightM-UNet achieves superior segmentation performance while drastically reducing parameter and computation costs by 116x and 21x, respectively. This highlights the potential of Mamba in facilitating model lightweighting. Our code implementation is publicly available at https://github.com/MrBlankness/LightM-UNet.
MobileNetV2: Inverted Residuals and Linear Bottlenecks
In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3. The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as the number of parameters
Multi-Head Explainer: A General Framework to Improve Explainability in CNNs and Transformers
In this study, we introduce the Multi-Head Explainer (MHEX), a versatile and modular framework that enhances both the explainability and accuracy of Convolutional Neural Networks (CNNs) and Transformer-based models. MHEX consists of three core components: an Attention Gate that dynamically highlights task-relevant features, Deep Supervision that guides early layers to capture fine-grained details pertinent to the target class, and an Equivalent Matrix that unifies refined local and global representations to generate comprehensive saliency maps. Our approach demonstrates superior compatibility, enabling effortless integration into existing residual networks like ResNet and Transformer architectures such as BERT with minimal modifications. Extensive experiments on benchmark datasets in medical imaging and text classification show that MHEX not only improves classification accuracy but also produces highly interpretable and detailed saliency scores.
Can Alfvénic Fluctuations Affect the Correlation and Complexity of Magnetic Fields in Magnetic Ejecta? A Case Study Based on Multi-Spacecraft Measurements at 1~au
We investigate whether Alfv\'enic fluctuations (AFs) can affect the structure of magnetic ejecta (MEs) within interplanetary coronal mass ejections (ICMEs). We study an ICME observed on 2001 December 29 at 1 au by ACE and Wind, at a total angular separation of sim0.8^circ (sim0.014~au). We focus on the correlation and complexity of its magnetic structure measured between two spacecraft in association with large-amplitude AFs. The Alfv\'enicity of the ME is investigated in terms of the residual energy and cross helicity of fluctuations. We find that as for the event of interest, large-amplitude AFs occur in the rear region of the ME at both Wind and ACE with a duration of about six hours. We compare the correlation of the magnetic field strength and vector components measured between Wind and ACE, and investigate complexity in terms of the magnetic hodograms. The region showing AFs is found to be associated with a decreased correlation of the magnetic field components and an increased complexity of the ME magnetic configuration detected at ACE and Wind, which may be due to the fact that the two spacecraft crossing the same ME along different trajectories likely sampled AFs in different oscillation phases. Combining multi-point in-situ measurements and remote-sensing observations of the ICME source region, we further discuss different potential sources of the AFs.
RoI Tanh-polar Transformer Network for Face Parsing in the Wild
Face parsing aims to predict pixel-wise labels for facial components of a target face in an image. Existing approaches usually crop the target face from the input image with respect to a bounding box calculated during pre-processing, and thus can only parse inner facial Regions of Interest~(RoIs). Peripheral regions like hair are ignored and nearby faces that are partially included in the bounding box can cause distractions. Moreover, these methods are only trained and evaluated on near-frontal portrait images and thus their performance for in-the-wild cases has been unexplored. To address these issues, this paper makes three contributions. First, we introduce iBugMask dataset for face parsing in the wild, which consists of 21,866 training images and 1,000 testing images. The training images are obtained by augmenting an existing dataset with large face poses. The testing images are manually annotated with 11 facial regions and there are large variations in sizes, poses, expressions and background. Second, we propose RoI Tanh-polar transform that warps the whole image to a Tanh-polar representation with a fixed ratio between the face area and the context, guided by the target bounding box. The new representation contains all information in the original image, and allows for rotation equivariance in the convolutional neural networks~(CNNs). Third, we propose a hybrid residual representation learning block, coined HybridBlock, that contains convolutional layers in both the Tanh-polar space and the Tanh-Cartesian space, allowing for receptive fields of different shapes in CNNs. Through extensive experiments, we show that the proposed method improves the state-of-the-art for face parsing in the wild and does not require facial landmarks for alignment.
Deep Aramaic: Towards a Synthetic Data Paradigm Enabling Machine Learning in Epigraphy
Epigraphy increasingly turns to modern artificial intelligence (AI) technologies such as machine learning (ML) for extracting insights from ancient inscriptions. However, scarce labeled data for training ML algorithms severely limits current techniques, especially for ancient scripts like Old Aramaic. Our research pioneers an innovative methodology for generating synthetic training data tailored to Old Aramaic letters. Our pipeline synthesizes photo-realistic Aramaic letter datasets, incorporating textural features, lighting, damage, and augmentations to mimic real-world inscription diversity. Despite minimal real examples, we engineer a dataset of 250,000 training and 25,000 validation images covering the 22 letter classes in the Aramaic alphabet. This comprehensive corpus provides a robust volume of data for training a residual neural network (ResNet) to classify highly degraded Aramaic letters. The ResNet model demonstrates high accuracy in classifying real images from the 8th century BCE Hadad statue inscription. Additional experiments validate performance on varying materials and styles, proving effective generalization. Our results validate the model's capabilities in handling diverse real-world scenarios, proving the viability of our synthetic data approach and avoiding the dependence on scarce training data that has constrained epigraphic analysis. Our innovative framework elevates interpretation accuracy on damaged inscriptions, thus enhancing knowledge extraction from these historical resources.
Global Convergence of Block Coordinate Descent in Deep Learning
Deep learning has aroused extensive attention due to its great empirical success. The efficiency of the block coordinate descent (BCD) methods has been recently demonstrated in deep neural network (DNN) training. However, theoretical studies on their convergence properties are limited due to the highly nonconvex nature of DNN training. In this paper, we aim at providing a general methodology for provable convergence guarantees for this type of methods. In particular, for most of the commonly used DNN training models involving both two- and three-splitting schemes, we establish the global convergence to a critical point at a rate of {cal O}(1/k), where k is the number of iterations. The results extend to general loss functions which have Lipschitz continuous gradients and deep residual networks (ResNets). Our key development adds several new elements to the Kurdyka-{\L}ojasiewicz inequality framework that enables us to carry out the global convergence analysis of BCD in the general scenario of deep learning.
Neurons in Large Language Models: Dead, N-gram, Positional
We analyze a family of large language models in such a lightweight manner that can be done on a single GPU. Specifically, we focus on the OPT family of models ranging from 125m to 66b parameters and rely only on whether an FFN neuron is activated or not. First, we find that the early part of the network is sparse and represents many discrete features. Here, many neurons (more than 70% in some layers of the 66b model) are "dead", i.e. they never activate on a large collection of diverse data. At the same time, many of the alive neurons are reserved for discrete features and act as token and n-gram detectors. Interestingly, their corresponding FFN updates not only promote next token candidates as could be expected, but also explicitly focus on removing the information about triggering them tokens, i.e., current input. To the best of our knowledge, this is the first example of mechanisms specialized at removing (rather than adding) information from the residual stream. With scale, models become more sparse in a sense that they have more dead neurons and token detectors. Finally, some neurons are positional: them being activated or not depends largely (or solely) on position and less so (or not at all) on textual data. We find that smaller models have sets of neurons acting as position range indicators while larger models operate in a less explicit manner.
Confidence Regulation Neurons in Language Models
Despite their widespread use, the mechanisms by which large language models (LLMs) represent and regulate uncertainty in next-token predictions remain largely unexplored. This study investigates two critical components believed to influence this uncertainty: the recently discovered entropy neurons and a new set of components that we term token frequency neurons. Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits. Our work shows that entropy neurons operate by writing onto an unembedding null space, allowing them to impact the residual stream norm with minimal direct effect on the logits themselves. We observe the presence of entropy neurons across a range of models, up to 7 billion parameters. On the other hand, token frequency neurons, which we discover and describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution. Finally, we present a detailed case study where entropy neurons actively manage confidence in the setting of induction, i.e. detecting and continuing repeated subsequences.
Achieving Tokenizer Flexibility in Language Models through Heuristic Adaptation and Supertoken Learning
Pretrained language models (LLMs) are often constrained by their fixed tokenization schemes, leading to inefficiencies and performance limitations, particularly for multilingual or specialized applications. This tokenizer lock-in presents significant challenges. standard methods to overcome this often require prohibitive computational resources. Although tokenizer replacement with heuristic initialization aims to reduce this burden, existing methods often require exhaustive residual fine-tuning and still may not fully preserve semantic nuances or adequately address the underlying compression inefficiencies. Our framework introduces two innovations: first, Tokenadapt, a model-agnostic tokenizer transplantation method, and second, novel pre-tokenization learning for multi-word Supertokens to enhance compression and reduce fragmentation. Tokenadapt initializes new unique token embeddings via a hybrid heuristic that combines two methods: a local estimate based on subword decomposition using the old tokenizer, and a global estimate utilizing the top-k semantically similar tokens from the original vocabulary. This methodology aims to preserve semantics while significantly minimizing retraining requirements. Empirical investigations validate both contributions: the transplantation heuristic successfully initializes unique tokens, markedly outperforming conventional baselines and sophisticated methods including Transtokenizer and ReTok, while our Supertokens achieve notable compression gains. Our zero-shot perplexity results demonstrate that the TokenAdapt hybrid initialization consistently yields lower perplexity ratios compared to both ReTok and TransTokenizer baselines across different base models and newly trained target tokenizers. TokenAdapt typically reduced the overall perplexity ratio significantly compared to ReTok, yielding at least a 2-fold improvement in these aggregate scores.
Unraveling Complex Data Diversity in Underwater Acoustic Target Recognition through Convolution-based Mixture of Experts
Underwater acoustic target recognition is a difficult task owing to the intricate nature of underwater acoustic signals. The complex underwater environments, unpredictable transmission channels, and dynamic motion states greatly impact the real-world underwater acoustic signals, and may even obscure the intrinsic characteristics related to targets. Consequently, the data distribution of underwater acoustic signals exhibits high intra-class diversity, thereby compromising the accuracy and robustness of recognition systems.To address these issues, this work proposes a convolution-based mixture of experts (CMoE) that recognizes underwater targets in a fine-grained manner. The proposed technique introduces multiple expert layers as independent learners, along with a routing layer that determines the assignment of experts according to the characteristics of inputs. This design allows the model to utilize independent parameter spaces, facilitating the learning of complex underwater signals with high intra-class diversity. Furthermore, this work optimizes the CMoE structure by balancing regularization and an optional residual module. To validate the efficacy of our proposed techniques, we conducted detailed experiments and visualization analyses on three underwater acoustic databases across several acoustic features. The experimental results demonstrate that our CMoE consistently achieves significant performance improvements, delivering superior recognition accuracy when compared to existing advanced methods.
R-TOFU: Unlearning in Large Reasoning Models
Large Reasoning Models (LRMs) embed private or copyrighted information not only in their final answers but also throughout multi-step chain-of-thought (CoT) traces, making reliable unlearning far more demanding than in standard LLMs. We introduce Reasoning-TOFU (R-TOFU), the first benchmark tailored to this setting. R-TOFU augments existing unlearning tasks with realistic CoT annotations and provides step-wise metrics that expose residual knowledge invisible to answer-level checks. Using R-TOFU, we carry out a comprehensive comparison of gradient-based and preference-optimization baselines and show that conventional answer-only objectives leave substantial forget traces in reasoning. We further propose Reasoned IDK, a preference-optimization variant that preserves coherent yet inconclusive reasoning, achieving a stronger balance between forgetting efficacy and model utility than earlier refusal styles. Finally, we identify a failure mode: decoding variants such as ZeroThink and LessThink can still reveal forgotten content despite seemingly successful unlearning, emphasizing the need to evaluate models under diverse decoding settings. Together, the benchmark, analysis, and new baseline establish a systematic foundation for studying and improving unlearning in LRMs while preserving their reasoning capabilities.
CRCE: Coreference-Retention Concept Erasure in Text-to-Image Diffusion Models
Text-to-Image diffusion models can produce undesirable content that necessitates concept erasure techniques. However, existing methods struggle with under-erasure, leaving residual traces of targeted concepts, or over-erasure, mistakenly eliminating unrelated but visually similar concepts. To address these limitations, we introduce CRCE, a novel concept erasure framework that leverages Large Language Models to identify both semantically related concepts that should be erased alongside the target and distinct concepts that should be preserved. By explicitly modeling coreferential and retained concepts semantically, CRCE enables more precise concept removal, without unintended erasure. Experiments demonstrate that CRCE outperforms existing methods on diverse erasure tasks.
Joint Demosaicking and Denoising in the Wild: The Case of Training Under Ground Truth Uncertainty
Image demosaicking and denoising are the two key fundamental steps in digital camera pipelines, aiming to reconstruct clean color images from noisy luminance readings. In this paper, we propose and study Wild-JDD, a novel learning framework for joint demosaicking and denoising in the wild. In contrast to previous works which generally assume the ground truth of training data is a perfect reflection of the reality, we consider here the more common imperfect case of ground truth uncertainty in the wild. We first illustrate its manifestation as various kinds of artifacts including zipper effect, color moire and residual noise. Then we formulate a two-stage data degradation process to capture such ground truth uncertainty, where a conjugate prior distribution is imposed upon a base distribution. After that, we derive an evidence lower bound (ELBO) loss to train a neural network that approximates the parameters of the conjugate prior distribution conditioned on the degraded input. Finally, to further enhance the performance for out-of-distribution input, we design a simple but effective fine-tuning strategy by taking the input as a weakly informative prior. Taking into account ground truth uncertainty, Wild-JDD enjoys good interpretability during optimization. Extensive experiments validate that it outperforms state-of-the-art schemes on joint demosaicking and denoising tasks on both synthetic and realistic raw datasets.
Aligning Text to Image in Diffusion Models is Easier Than You Think
While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Although many approaches have attempted to address this issue by fine-tuning models using various reward models, etc., we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages both positive and negative pairs. To achieve this efficiently even with pretrained models, we introduce a lightweight contrastive fine tuning strategy called SoftREPA that uses soft text tokens. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.
Tilt-To-Length Coupling in LISA -- Uncertainty and Biases
The coupling of the angular jitter of the spacecraft and their sub-assemblies with the optical bench and the telescope into the interferometric length readout will be a major noise source in the LISA mission. We refer to this noise as tilt-to-length (TTL) coupling. It will be reduced directly by realignments, and the residual noise will then be subtracted in post-processing. The success of these mitigation strategies depends on an accurate computation of the TTL coupling coefficients. We present here a thorough analysis of the accuracy of the coefficient estimation under different jitter characteristics, angular readout noise levels, and gravitational wave sources. We analyze in which cases the estimates degrade using two estimators, the common least squares estimator and the instrumental variables estimator. Our investigations show that angular readout noise leads to a bias of the least squares estimator, depending on the TTL coupling coefficients, jitter and readout noise level, while the instrumental variable estimator is not biased. We present an equation that predicts the estimation bias of the least squares method due to angular readout noise.
Implicit In-context Learning
In-context Learning (ICL) empowers large language models (LLMs) to adapt to unseen tasks during inference by prefixing a few demonstration examples prior to test queries. Despite its versatility, ICL incurs substantial computational and memory overheads compared to zero-shot learning and is susceptible to the selection and order of demonstration examples. In this work, we introduce Implicit In-context Learning (I2CL), an innovative paradigm that addresses the challenges associated with traditional ICL by absorbing demonstration examples within the activation space. I2CL first generates a condensed vector representation, namely a context vector, from the demonstration examples. It then integrates the context vector during inference by injecting a linear combination of the context vector and query activations into the model's residual streams. Empirical evaluation on nine real-world tasks across three model architectures demonstrates that I2CL achieves few-shot performance with zero-shot cost and exhibits robustness against the variation of demonstration examples. Furthermore, I2CL facilitates a novel representation of "task-ids", enhancing task similarity detection and enabling effective transfer learning. We provide a comprehensive analysis of I2CL, offering deeper insights into its mechanisms and broader implications for ICL. The source code is available at: https://github.com/LzVv123456/I2CL.
Dictionary Learning Improves Patch-Free Circuit Discovery in Mechanistic Interpretability: A Case Study on Othello-GPT
Sparse dictionary learning has been a rapidly growing technique in mechanistic interpretability to attack superposition and extract more human-understandable features from model activations. We ask a further question based on the extracted more monosemantic features: How do we recognize circuits connecting the enormous amount of dictionary features? We propose a circuit discovery framework alternative to activation patching. Our framework suffers less from out-of-distribution and proves to be more efficient in terms of asymptotic complexity. The basic unit in our framework is dictionary features decomposed from all modules writing to the residual stream, including embedding, attention output and MLP output. Starting from any logit, dictionary feature or attention score, we manage to trace down to lower-level dictionary features of all tokens and compute their contribution to these more interpretable and local model behaviors. We dig in a small transformer trained on a synthetic task named Othello and find a number of human-understandable fine-grained circuits inside of it.
Closing the ODE-SDE gap in score-based diffusion models through the Fokker-Planck equation
Score-based diffusion models have emerged as one of the most promising frameworks for deep generative modelling, due to their state-of-the art performance in many generation tasks while relying on mathematical foundations such as stochastic differential equations (SDEs) and ordinary differential equations (ODEs). Empirically, it has been reported that ODE based samples are inferior to SDE based samples. In this paper we rigorously describe the range of dynamics and approximations that arise when training score-based diffusion models, including the true SDE dynamics, the neural approximations, the various approximate particle dynamics that result, as well as their associated Fokker--Planck equations and the neural network approximations of these Fokker--Planck equations. We systematically analyse the difference between the ODE and SDE dynamics of score-based diffusion models, and link it to an associated Fokker--Planck equation. We derive a theoretical upper bound on the Wasserstein 2-distance between the ODE- and SDE-induced distributions in terms of a Fokker--Planck residual. We also show numerically that conventional score-based diffusion models can exhibit significant differences between ODE- and SDE-induced distributions which we demonstrate using explicit comparisons. Moreover, we show numerically that reducing the Fokker--Planck residual by adding it as an additional regularisation term leads to closing the gap between ODE- and SDE-induced distributions. Our experiments suggest that this regularisation can improve the distribution generated by the ODE, however that this can come at the cost of degraded SDE sample quality.
Creation of single vacancies in hBN with electron irradiation
Understanding electron irradiation effects is vital not only for reliable transmission electron microscopy characterization, but increasingly also for the controlled manipulation of two-dimensional materials. The displacement cross sections of monolayer hBN are measured using aberration-corrected scanning transmission electron microscopy in near ultra-high vacuum at primary beam energies between 50 and 90 keV. Damage rates below 80 keV are up to three orders of magnitude lower than previously measured at edges under poorer residual vacuum conditions where chemical etching appears to have been dominant. Notably, is possible to create single vacancies in hBN using electron irradiation, with boron almost twice as likely as nitrogen to be ejected below 80 keV. Moreover, any damage at such low energies cannot be explained by elastic knock-on, even when accounting for vibrations of the atoms. A theoretical description is developed to account for lowering of the displacement threshold due to valence ionization resulting from inelastic scattering of probe electrons, modelled using charge-constrained density functional theory molecular dynamics. Although significant reductions are found depending on the constrained charge, quantitative predictions for realistic ionization states are currently not possible. Nonetheless, there is potential for defect-engineering of hBN at the level of single vacancies using electron irradiation.
Multimodal Neurons in Pretrained Text-Only Transformers
Language models demonstrate remarkable capacity to generalize representations learned in one modality to downstream tasks in other modalities. Can we trace this ability to individual neurons? We study the case where a frozen text transformer is augmented with vision using a self-supervised visual encoder and a single linear projection learned on an image-to-text task. Outputs of the projection layer are not immediately decodable into language describing image content; instead, we find that translation between modalities occurs deeper within the transformer. We introduce a procedure for identifying "multimodal neurons" that convert visual representations into corresponding text, and decoding the concepts they inject into the model's residual stream. In a series of experiments, we show that multimodal neurons operate on specific visual concepts across inputs, and have a systematic causal effect on image captioning.
Colorful Diffuse Intrinsic Image Decomposition in the Wild
Intrinsic image decomposition aims to separate the surface reflectance and the effects from the illumination given a single photograph. Due to the complexity of the problem, most prior works assume a single-color illumination and a Lambertian world, which limits their use in illumination-aware image editing applications. In this work, we separate an input image into its diffuse albedo, colorful diffuse shading, and specular residual components. We arrive at our result by gradually removing first the single-color illumination and then the Lambertian-world assumptions. We show that by dividing the problem into easier sub-problems, in-the-wild colorful diffuse shading estimation can be achieved despite the limited ground-truth datasets. Our extended intrinsic model enables illumination-aware analysis of photographs and can be used for image editing applications such as specularity removal and per-pixel white balancing.
Efficient Post-Training Refinement of Latent Reasoning in Large Language Models
Reasoning is a key component of language understanding in Large Language Models. While Chain-of-Thought prompting enhances performance via explicit intermediate steps, it suffers from sufficient token overhead and a fixed reasoning trajectory, preventing step-wise refinement. Recent advances in latent reasoning address these limitations by refining internal reasoning processes directly in the model's latent space, without producing explicit outputs. However, a key challenge remains: how to effectively update reasoning embeddings during post-training to guide the model toward more accurate solutions. To overcome this challenge, we propose a lightweight post-training framework that refines latent reasoning trajectories using two novel strategies: 1) Contrastive reasoning feedback, which compares reasoning embeddings against strong and weak baselines to infer effective update directions via embedding enhancement; 2) Residual embedding refinement, which stabilizes updates by progressively integrating current and historical gradients, enabling fast yet controlled convergence. Extensive experiments and case studies are conducted on five reasoning benchmarks to demonstrate the effectiveness of the proposed framework. Notably, a 5\% accuracy gain on MathQA without additional training.
Talking Heads: Understanding Inter-layer Communication in Transformer Language Models
Although it is known that transformer language models (LMs) pass features from early layers to later layers, it is not well understood how this information is represented and routed by the model. By analyzing particular mechanism LMs use to accomplish this, we find that it is also used to recall items from a list, and show that this mechanism can explain an otherwise arbitrary-seeming sensitivity of the model to the order of items in the prompt. Specifically, we find that models write into low-rank subspaces of the residual stream to represent features which are then read out by specific later layers, forming low-rank communication channels between layers. By decomposing attention head weight matrices with the Singular Value Decomposition (SVD), we find that previously described interactions between heads separated by one or more layers can be predicted via analysis of their weight matrices. We show that it is possible to manipulate the internal model representations as well as edit model weights based on the mechanism we discover in order to significantly improve performance on our synthetic Laundry List task, which requires recall from a list, often improving task accuracy by over 20%. Our analysis reveals a surprisingly intricate interpretable structure learned from language model pretraining, and helps us understand why sophisticated LMs sometimes fail in simple domains, facilitating future analysis of more complex behaviors.
Optimizing for the Shortest Path in Denoising Diffusion Model
In this research, we propose a novel denoising diffusion model based on shortest-path modeling that optimizes residual propagation to enhance both denoising efficiency and quality. Drawing on Denoising Diffusion Implicit Models (DDIM) and insights from graph theory, our model, termed the Shortest Path Diffusion Model (ShortDF), treats the denoising process as a shortest-path problem aimed at minimizing reconstruction error. By optimizing the initial residuals, we improve the efficiency of the reverse diffusion process and the quality of the generated samples. Extensive experiments on multiple standard benchmarks demonstrate that ShortDF significantly reduces diffusion time (or steps) while enhancing the visual fidelity of generated samples compared to prior arts. This work, we suppose, paves the way for interactive diffusion-based applications and establishes a foundation for rapid data generation. Code is available at https://github.com/UnicomAI/ShortDF.
D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement
We introduce D-FINE, a powerful real-time object detector that achieves outstanding localization precision by redefining the bounding box regression task in DETR models. D-FINE comprises two key components: Fine-grained Distribution Refinement (FDR) and Global Optimal Localization Self-Distillation (GO-LSD). FDR transforms the regression process from predicting fixed coordinates to iteratively refining probability distributions, providing a fine-grained intermediate representation that significantly enhances localization accuracy. GO-LSD is a bidirectional optimization strategy that transfers localization knowledge from refined distributions to shallower layers through self-distillation, while also simplifying the residual prediction tasks for deeper layers. Additionally, D-FINE incorporates lightweight optimizations in computationally intensive modules and operations, achieving a better balance between speed and accuracy. Specifically, D-FINE-L / X achieves 54.0% / 55.8% AP on the COCO dataset at 124 / 78 FPS on an NVIDIA T4 GPU. When pretrained on Objects365, D-FINE-L / X attains 57.1% / 59.3% AP, surpassing all existing real-time detectors. Furthermore, our method significantly enhances the performance of a wide range of DETR models by up to 5.3% AP with negligible extra parameters and training costs. Our code and pretrained models: https://github.com/Peterande/D-FINE.
The Shaped Transformer: Attention Models in the Infinite Depth-and-Width Limit
In deep learning theory, the covariance matrix of the representations serves as a proxy to examine the network's trainability. Motivated by the success of Transformers, we study the covariance matrix of a modified Softmax-based attention model with skip connections in the proportional limit of infinite-depth-and-width. We show that at initialization the limiting distribution can be described by a stochastic differential equation (SDE) indexed by the depth-to-width ratio. To achieve a well-defined stochastic limit, the Transformer's attention mechanism is modified by centering the Softmax output at identity, and scaling the Softmax logits by a width-dependent temperature parameter. We examine the stability of the network through the corresponding SDE, showing how the scale of both the drift and diffusion can be elegantly controlled with the aid of residual connections. The existence of a stable SDE implies that the covariance structure is well-behaved, even for very large depth and width, thus preventing the notorious issues of rank degeneracy in deep attention models. Finally, we show, through simulations, that the SDE provides a surprisingly good description of the corresponding finite-size model. We coin the name shaped Transformer for these architectural modifications.
Partially Rewriting a Transformer in Natural Language
The greatest ambition of mechanistic interpretability is to completely rewrite deep neural networks in a format that is more amenable to human understanding, while preserving their behavior and performance. In this paper, we attempt to partially rewrite a large language model using simple natural language explanations. We first approximate one of the feedforward networks in the LLM with a wider MLP with sparsely activating neurons - a transcoder - and use an automated interpretability pipeline to generate explanations for these neurons. We then replace the first layer of this sparse MLP with an LLM-based simulator, which predicts the activation of each neuron given its explanation and the surrounding context. Finally, we measure the degree to which these modifications distort the model's final output. With our pipeline, the model's increase in loss is statistically similar to entirely replacing the sparse MLP output with the zero vector. We employ the same protocol, this time using a sparse autoencoder, on the residual stream of the same layer and obtain similar results. These results suggest that more detailed explanations are needed to improve performance substantially above the zero ablation baseline.
Understanding Gated Neurons in Transformers from Their Input-Output Functionality
Interpretability researchers have attempted to understand MLP neurons of language models based on both the contexts in which they activate and their output weight vectors. They have paid little attention to a complementary aspect: the interactions between input and output. For example, when neurons detect a direction in the input, they might add much the same direction to the residual stream ("enrichment neurons") or reduce its presence ("depletion neurons"). We address this aspect by examining the cosine similarity between input and output weights of a neuron. We apply our method to 12 models and find that enrichment neurons dominate in early-middle layers whereas later layers tend more towards depletion. To explain this finding, we argue that enrichment neurons are largely responsible for enriching concept representations, one of the first steps of factual recall. Our input-output perspective is a complement to activation-dependent analyses and to approaches that treat input and output separately.
Transformers Use Causal World Models in Maze-Solving Tasks
Recent studies in interpretability have explored the inner workings of transformer models trained on tasks across various domains, often discovering that these networks naturally develop highly structured representations. When such representations comprehensively reflect the task domain's structure, they are commonly referred to as "World Models" (WMs). In this work, we identify WMs in transformers trained on maze-solving tasks. By using Sparse Autoencoders (SAEs) and analyzing attention patterns, we examine the construction of WMs and demonstrate consistency between SAE feature-based and circuit-based analyses. By subsequently intervening on isolated features to confirm their causal role, we find that it is easier to activate features than to suppress them. Furthermore, we find that models can reason about mazes involving more simultaneously active features than they encountered during training; however, when these same mazes (with greater numbers of connections) are provided to models via input tokens instead, the models fail. Finally, we demonstrate that positional encoding schemes appear to influence how World Models are structured within the model's residual stream.
Automatically Interpreting Millions of Features in Large Language Models
While the activations of neurons in deep neural networks usually do not have a simple human-understandable interpretation, sparse autoencoders (SAEs) can be used to transform these activations into a higher-dimensional latent space which may be more easily interpretable. However, these SAEs can have millions of distinct latent features, making it infeasible for humans to manually interpret each one. In this work, we build an open-source automated pipeline to generate and evaluate natural language explanations for SAE features using LLMs. We test our framework on SAEs of varying sizes, activation functions, and losses, trained on two different open-weight LLMs. We introduce five new techniques to score the quality of explanations that are cheaper to run than the previous state of the art. One of these techniques, intervention scoring, evaluates the interpretability of the effects of intervening on a feature, which we find explains features that are not recalled by existing methods. We propose guidelines for generating better explanations that remain valid for a broader set of activating contexts, and discuss pitfalls with existing scoring techniques. We use our explanations to measure the semantic similarity of independently trained SAEs, and find that SAEs trained on nearby layers of the residual stream are highly similar. Our large-scale analysis confirms that SAE latents are indeed much more interpretable than neurons, even when neurons are sparsified using top-k postprocessing. Our code is available at https://github.com/EleutherAI/sae-auto-interp, and our explanations are available at https://huggingface.co/datasets/EleutherAI/auto_interp_explanations.
On Layer Normalization in the Transformer Architecture
The Transformer is widely used in natural language processing tasks. To train a Transformer however, one usually needs a carefully designed learning rate warm-up stage, which is shown to be crucial to the final performance but will slow down the optimization and bring more hyper-parameter tunings. In this paper, we first study theoretically why the learning rate warm-up stage is essential and show that the location of layer normalization matters. Specifically, we prove with mean field theory that at initialization, for the original-designed Post-LN Transformer, which places the layer normalization between the residual blocks, the expected gradients of the parameters near the output layer are large. Therefore, using a large learning rate on those gradients makes the training unstable. The warm-up stage is practically helpful for avoiding this problem. On the other hand, our theory also shows that if the layer normalization is put inside the residual blocks (recently proposed as Pre-LN Transformer), the gradients are well-behaved at initialization. This motivates us to remove the warm-up stage for the training of Pre-LN Transformers. We show in our experiments that Pre-LN Transformers without the warm-up stage can reach comparable results with baselines while requiring significantly less training time and hyper-parameter tuning on a wide range of applications.
An Empirical Analysis of Forgetting in Pre-trained Models with Incremental Low-Rank Updates
Broad, open source availability of large pretrained foundation models on the internet through platforms such as HuggingFace has taken the world of practical deep learning by storm. A classical pipeline for neural network training now typically consists of finetuning these pretrained network on a small target dataset instead of training from scratch. In the case of large models this can be done even on modest hardware using a low rank training technique known as Low-Rank Adaptation (LoRA). While Low Rank training has already been studied in the continual learning setting, existing works often consider storing the learned adapter along with the existing model but rarely attempt to modify the weights of the pretrained model by merging the LoRA with the existing weights after finishing the training of each task. In this article we investigate this setting and study the impact of LoRA rank on the forgetting of the pretraining foundation task and on the plasticity and forgetting of subsequent ones. We observe that this rank has an important impact on forgetting of both the pretraining and downstream tasks. We also observe that vision transformers finetuned in that way exhibit a sort of ``contextual'' forgetting, a behaviour that we do not observe for residual networks and that we believe has not been observed yet in previous continual learning works.
PMET: Precise Model Editing in a Transformer
Model editing techniques modify a minor proportion of knowledge in Large Language Models (LLMs) at a relatively low cost, which have demonstrated notable success. Existing methods assume Transformer Layer (TL) hidden states are values of key-value memories of the Feed-Forward Network (FFN). They usually optimize the TL hidden states to memorize target knowledge and use it to update the weights of the FFN in LLMs. However, the information flow of TL hidden states comes from three parts: Multi-Head Self-Attention (MHSA), FFN, and residual connections. Existing methods neglect the fact that the TL hidden states contains information not specifically required for FFN. Consequently, the performance of model editing decreases. To achieve more precise model editing, we analyze hidden states of MHSA and FFN, finding that MHSA encodes certain general knowledge extraction patterns. This implies that MHSA weights do not require updating when new knowledge is introduced. Based on above findings, we introduce PMET, which simultaneously optimizes Transformer Component (TC, namely MHSA and FFN) hidden states, while only using the optimized TC hidden states of FFN to precisely update FFN weights. Our experiments demonstrate that PMET exhibits state-of-the-art performance on both the COUNTERFACT and zsRE datasets. Our ablation experiments substantiate the effectiveness of our enhancements, further reinforcing the finding that the MHSA encodes certain general knowledge extraction patterns and indicating its storage of a small amount of factual knowledge. Our code is available at https://github.com/xpq-tech/PMET.
GELU Activation Function in Deep Learning: A Comprehensive Mathematical Analysis and Performance
Selecting the most suitable activation function is a critical factor in the effectiveness of deep learning models, as it influences their learning capacity, stability, and computational efficiency. In recent years, the Gaussian Error Linear Unit (GELU) activation function has emerged as a dominant method, surpassing traditional functions such as the Rectified Linear Unit (ReLU) in various applications. This study presents a rigorous mathematical investigation of the GELU activation function, exploring its differentiability, boundedness, stationarity, and smoothness properties in detail. Additionally, we conduct an extensive experimental comparison of the GELU function against a broad range of alternative activation functions, utilizing a residual convolutional network trained on the CIFAR-10, CIFAR-100, and STL-10 datasets as the empirical testbed. Our results demonstrate the superior performance of GELU compared to other activation functions, establishing its suitability for a wide range of deep learning applications. This comprehensive study contributes to a more profound understanding of the underlying mathematical properties of GELU and provides valuable insights for practitioners aiming to select activation functions that optimally align with their specific objectives and constraints in deep learning.
Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling
Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the "failure modes" of PINNs, although a thorough understanding of the connection between PINN failure modes and sampling strategies is missing. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that training PINNs relies on successful "propagation" of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures, characterized by highly imbalanced PDE residual fields. To mitigate propagation failures, we propose a novel Retain-Resample-Release sampling (R3) algorithm that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of R3 sampling to respect the principle of causality while solving time-dependent PDEs. We theoretically analyze the behavior of R3 sampling and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems.
Towards Inadequately Pre-trained Models in Transfer Learning
Pre-training has been a popular learning paradigm in deep learning era, especially in annotation-insufficient scenario. Better ImageNet pre-trained models have been demonstrated, from the perspective of architecture, by previous research to have better transferability to downstream tasks. However, in this paper, we found that during the same pre-training process, models at middle epochs, which is inadequately pre-trained, can outperform fully trained models when used as feature extractors (FE), while the fine-tuning (FT) performance still grows with the source performance. This reveals that there is not a solid positive correlation between top-1 accuracy on ImageNet and the transferring result on target data. Based on the contradictory phenomenon between FE and FT that better feature extractor fails to be fine-tuned better accordingly, we conduct comprehensive analyses on features before softmax layer to provide insightful explanations. Our discoveries suggest that, during pre-training, models tend to first learn spectral components corresponding to large singular values and the residual components contribute more when fine-tuning.
Learning to Aggregate Multi-Scale Context for Instance Segmentation in Remote Sensing Images
The task of instance segmentation in remote sensing images, aiming at performing per-pixel labeling of objects at instance level, is of great importance for various civil applications. Despite previous successes, most existing instance segmentation methods designed for natural images encounter sharp performance degradations when they are directly applied to top-view remote sensing images. Through careful analysis, we observe that the challenges mainly come from the lack of discriminative object features due to severe scale variations, low contrasts, and clustered distributions. In order to address these problems, a novel context aggregation network (CATNet) is proposed to improve the feature extraction process. The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid (SCP), and hierarchical region of interest extractor (HRoIE), to aggregate global visual context at feature, spatial, and instance domains, respectively. DenseFPN is a multi-scale feature propagation module that establishes more flexible information flows by adopting inter-level residual connections, cross-level dense connections, and feature re-weighting strategy. Leveraging the attention mechanism, SCP further augments the features by aggregating global spatial context into local regions. For each instance, HRoIE adaptively generates RoI features for different downstream tasks. Extensive evaluations of the proposed scheme on iSAID, DIOR, NWPU VHR-10, and HRSID datasets demonstrate that the proposed approach outperforms state-of-the-arts under similar computational costs. Source code and pre-trained models are available at https://github.com/yeliudev/CATNet.
Learning Structured Sparsity in Deep Neural Networks
High demand for computation resources severely hinders deployment of large-scale Deep Neural Networks (DNN) in resource constrained devices. In this work, we propose a Structured Sparsity Learning (SSL) method to regularize the structures (i.e., filters, channels, filter shapes, and layer depth) of DNNs. SSL can: (1) learn a compact structure from a bigger DNN to reduce computation cost; (2) obtain a hardware-friendly structured sparsity of DNN to efficiently accelerate the DNNs evaluation. Experimental results show that SSL achieves on average 5.1x and 3.1x speedups of convolutional layer computation of AlexNet against CPU and GPU, respectively, with off-the-shelf libraries. These speedups are about twice speedups of non-structured sparsity; (3) regularize the DNN structure to improve classification accuracy. The results show that for CIFAR-10, regularization on layer depth can reduce 20 layers of a Deep Residual Network (ResNet) to 18 layers while improve the accuracy from 91.25% to 92.60%, which is still slightly higher than that of original ResNet with 32 layers. For AlexNet, structure regularization by SSL also reduces the error by around ~1%. Open source code is in https://github.com/wenwei202/caffe/tree/scnn
Multi-Layer Transformers Gradient Can be Approximated in Almost Linear Time
The quadratic computational complexity in the self-attention mechanism of popular transformer architectures poses significant challenges for training and inference, particularly in terms of efficiency and memory requirements. Towards addressing these challenges, this paper introduces a novel fast computation method for gradient calculation in multi-layer transformer models. Our approach enables the computation of gradients for the entire multi-layer transformer model in almost linear time n^{1+o(1)}, where n is the input sequence length. This breakthrough significantly reduces the computational bottleneck associated with the traditional quadratic time complexity. Our theory holds for any loss function and maintains a bounded approximation error across the entire model. Furthermore, our analysis can hold when the multi-layer transformer model contains many practical sub-modules, such as residual connection, casual mask, and multi-head attention. By improving the efficiency of gradient computation in large language models, we hope that our work will facilitate the more effective training and deployment of long-context language models based on our theoretical results.
SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning
Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simplicity bias, guiding models toward simple and generalizable solutions. However, in deep RL, designing and scaling up networks have been less explored. Motivated by this opportunity, we present SimBa, an architecture designed to scale up parameters in deep RL by injecting a simplicity bias. SimBa consists of three components: (i) an observation normalization layer that standardizes inputs with running statistics, (ii) a residual feedforward block to provide a linear pathway from the input to output, and (iii) a layer normalization to control feature magnitudes. By scaling up parameters with SimBa, the sample efficiency of various deep RL algorithms-including off-policy, on-policy, and unsupervised methods-is consistently improved. Moreover, solely by integrating SimBa architecture into SAC, it matches or surpasses state-of-the-art deep RL methods with high computational efficiency across DMC, MyoSuite, and HumanoidBench. These results demonstrate SimBa's broad applicability and effectiveness across diverse RL algorithms and environments.
Active-Dormant Attention Heads: Mechanistically Demystifying Extreme-Token Phenomena in LLMs
Practitioners have consistently observed three puzzling phenomena in transformer-based large language models (LLMs): attention sinks, value-state drains, and residual-state peaks, collectively referred to as extreme-token phenomena. These phenomena are characterized by certain so-called "sink tokens" receiving disproportionately high attention weights, exhibiting significantly smaller value states, and having much larger residual-state norms than those of other tokens. These extreme tokens give rise to various challenges in LLM inference, quantization, and interpretability. We elucidate the mechanisms behind extreme-token phenomena. First, we show that these phenomena arise in very simple architectures -- transformers with one to three layers -- trained on a toy model, the Bigram-Backcopy (BB) task. In this setting, we identify an active-dormant mechanism, where attention heads become sinks for specific input domains while remaining non-sinks for others. Our theoretical analysis of the training dynamics reveals that these phenomena are driven by a mutual reinforcement mechanism. Building on these insights, we propose strategies to mitigate extreme-token phenomena during pretraining, including replacing softmax with ReLU and Adam with SGD. Next, we extend our analysis to pretrained LLMs, including Llama and OLMo, showing that many attention heads exhibit a similar active-dormant mechanism as in the BB task, and that the mutual reinforcement mechanism also governs the emergence of extreme-token phenomena during LLM pretraining. Our results reveal that many of the static and dynamic properties of extreme-token phenomena predicted by the BB task align with observations in pretrained LLMs.
A Mechanistic Interpretation of Arithmetic Reasoning in Language Models using Causal Mediation Analysis
Mathematical reasoning in large language models (LMs) has garnered significant attention in recent work, but there is a limited understanding of how these models process and store information related to arithmetic tasks within their architecture. In order to improve our understanding of this aspect of language models, we present a mechanistic interpretation of Transformer-based LMs on arithmetic questions using a causal mediation analysis framework. By intervening on the activations of specific model components and measuring the resulting changes in predicted probabilities, we identify the subset of parameters responsible for specific predictions. This provides insights into how information related to arithmetic is processed by LMs. Our experimental results indicate that LMs process the input by transmitting the information relevant to the query from mid-sequence early layers to the final token using the attention mechanism. Then, this information is processed by a set of MLP modules, which generate result-related information that is incorporated into the residual stream. To assess the specificity of the observed activation dynamics, we compare the effects of different model components on arithmetic queries with other tasks, including number retrieval from prompts and factual knowledge questions.
Temporal Flow Mask Attention for Open-Set Long-Tailed Recognition of Wild Animals in Camera-Trap Images
Camera traps, unmanned observation devices, and deep learning-based image recognition systems have greatly reduced human effort in collecting and analyzing wildlife images. However, data collected via above apparatus exhibits 1) long-tailed and 2) open-ended distribution problems. To tackle the open-set long-tailed recognition problem, we propose the Temporal Flow Mask Attention Network that comprises three key building blocks: 1) an optical flow module, 2) an attention residual module, and 3) a meta-embedding classifier. We extract temporal features of sequential frames using the optical flow module and learn informative representation using attention residual blocks. Moreover, we show that applying the meta-embedding technique boosts the performance of the method in open-set long-tailed recognition. We apply this method on a Korean Demilitarized Zone (DMZ) dataset. We conduct extensive experiments, and quantitative and qualitative analyses to prove that our method effectively tackles the open-set long-tailed recognition problem while being robust to unknown classes.
Finding the Missing Data: A BERT-inspired Approach Against Package Loss in Wireless Sensing
Despite the development of various deep learning methods for Wi-Fi sensing, package loss often results in noncontinuous estimation of the Channel State Information (CSI), which negatively impacts the performance of the learning models. To overcome this challenge, we propose a deep learning model based on Bidirectional Encoder Representations from Transformers (BERT) for CSI recovery, named CSI-BERT. CSI-BERT can be trained in an self-supervised manner on the target dataset without the need for additional data. Furthermore, unlike traditional interpolation methods that focus on one subcarrier at a time, CSI-BERT captures the sequential relationships across different subcarriers. Experimental results demonstrate that CSI-BERT achieves lower error rates and faster speed compared to traditional interpolation methods, even when facing with high loss rates. Moreover, by harnessing the recovered CSI obtained from CSI-BERT, other deep learning models like Residual Network and Recurrent Neural Network can achieve an average increase in accuracy of approximately 15\% in Wi-Fi sensing tasks. The collected dataset WiGesture and code for our model are publicly available at https://github.com/RS2002/CSI-BERT.
Uncovering hidden geometry in Transformers via disentangling position and context
Transformers are widely used to extract semantic meanings from input tokens, yet they usually operate as black-box models. In this paper, we present a simple yet informative decomposition of hidden states (or embeddings) of trained transformers into interpretable components. For any layer, embedding vectors of input sequence samples are represented by a tensor h in R^{C times T times d}. Given embedding vector h_{c,t} in R^d at sequence position t le T in a sequence (or context) c le C, extracting the mean effects yields the decomposition \[ h_{c,t} = \mu + pos_t + ctx_c + resid_{c,t} \] where mu is the global mean vector, pos_t and ctx_c are the mean vectors across contexts and across positions respectively, and resid_{c,t} is the residual vector. For popular transformer architectures and diverse text datasets, empirically we find pervasive mathematical structure: (1) (pos_t)_{t} forms a low-dimensional, continuous, and often spiral shape across layers, (2) (ctx_c)_c shows clear cluster structure that falls into context topics, and (3) (pos_t)_{t} and (ctx_c)_c are mutually nearly orthogonal. We argue that smoothness is pervasive and beneficial to transformers trained on languages, and our decomposition leads to improved model interpretability.
Contextually Customized Video Summaries via Natural Language
The best summary of a long video differs among different people due to its highly subjective nature. Even for the same person, the best summary may change with time or mood. In this paper, we introduce the task of generating customized video summaries through simple text. First, we train a deep architecture to effectively learn semantic embeddings of video frames by leveraging the abundance of image-caption data via a progressive and residual manner. Given a user-specific text description, our algorithm is able to select semantically relevant video segments and produce a temporally aligned video summary. In order to evaluate our textually customized video summaries, we conduct experimental comparison with baseline methods that utilize ground-truth information. Despite the challenging baselines, our method still manages to show comparable or even exceeding performance. We also show that our method is able to generate semantically diverse video summaries by only utilizing the learned visual embeddings.
SAFE: Sensitivity-Aware Features for Out-of-Distribution Object Detection
We address the problem of out-of-distribution (OOD) detection for the task of object detection. We show that residual convolutional layers with batch normalisation produce Sensitivity-Aware FEatures (SAFE) that are consistently powerful for distinguishing in-distribution from out-of-distribution detections. We extract SAFE vectors for every detected object, and train a multilayer perceptron on the surrogate task of distinguishing adversarially perturbed from clean in-distribution examples. This circumvents the need for realistic OOD training data, computationally expensive generative models, or retraining of the base object detector. SAFE outperforms the state-of-the-art OOD object detectors on multiple benchmarks by large margins, e.g. reducing the FPR95 by an absolute 30.6% from 48.3% to 17.7% on the OpenImages dataset.
diffGrad: An Optimization Method for Convolutional Neural Networks
Stochastic Gradient Decent (SGD) is one of the core techniques behind the success of deep neural networks. The gradient provides information on the direction in which a function has the steepest rate of change. The main problem with basic SGD is to change by equal sized steps for all parameters, irrespective of gradient behavior. Hence, an efficient way of deep network optimization is to make adaptive step sizes for each parameter. Recently, several attempts have been made to improve gradient descent methods such as AdaGrad, AdaDelta, RMSProp and Adam. These methods rely on the square roots of exponential moving averages of squared past gradients. Thus, these methods do not take advantage of local change in gradients. In this paper, a novel optimizer is proposed based on the difference between the present and the immediate past gradient (i.e., diffGrad). In the proposed diffGrad optimization technique, the step size is adjusted for each parameter in such a way that it should have a larger step size for faster gradient changing parameters and a lower step size for lower gradient changing parameters. The convergence analysis is done using the regret bound approach of online learning framework. Rigorous analysis is made in this paper over three synthetic complex non-convex functions. The image categorization experiments are also conducted over the CIFAR10 and CIFAR100 datasets to observe the performance of diffGrad with respect to the state-of-the-art optimizers such as SGDM, AdaGrad, AdaDelta, RMSProp, AMSGrad, and Adam. The residual unit (ResNet) based Convolutional Neural Networks (CNN) architecture is used in the experiments. The experiments show that diffGrad outperforms other optimizers. Also, we show that diffGrad performs uniformly well for training CNN using different activation functions. The source code is made publicly available at https://github.com/shivram1987/diffGrad.
DRCT: Saving Image Super-resolution away from Information Bottleneck
In recent years, Vision Transformer-based approaches for low-level vision tasks have achieved widespread success. Unlike CNN-based models, Transformers are more adept at capturing long-range dependencies, enabling the reconstruction of images utilizing non-local information. In the domain of super-resolution, Swin-transformer-based models have become mainstream due to their capability of global spatial information modeling and their shifting-window attention mechanism that facilitates the interchange of information between different windows. Many researchers have enhanced model performance by expanding the receptive fields or designing meticulous networks, yielding commendable results. However, we observed that it is a general phenomenon for the feature map intensity to be abruptly suppressed to small values towards the network's end. This implies an information bottleneck and a diminishment of spatial information, implicitly limiting the model's potential. To address this, we propose the Dense-residual-connected Transformer (DRCT), aimed at mitigating the loss of spatial information and stabilizing the information flow through dense-residual connections between layers, thereby unleashing the model's potential and saving the model away from information bottleneck. Experiment results indicate that our approach surpasses state-of-the-art methods on benchmark datasets and performs commendably at the NTIRE-2024 Image Super-Resolution (x4) Challenge. Our source code is available at https://github.com/ming053l/DRCT
FROSTER: Frozen CLIP Is A Strong Teacher for Open-Vocabulary Action Recognition
In this paper, we introduce FROSTER, an effective framework for open-vocabulary action recognition. The CLIP model has achieved remarkable success in a range of image-based tasks, benefiting from its strong generalization capability stemming from pretaining on massive image-text pairs. However, applying CLIP directly to the open-vocabulary action recognition task is challenging due to the absence of temporal information in CLIP's pretraining. Further, fine-tuning CLIP on action recognition datasets may lead to overfitting and hinder its generalizability, resulting in unsatisfactory results when dealing with unseen actions. To address these issues, FROSTER employs a residual feature distillation approach to ensure that CLIP retains its generalization capability while effectively adapting to the action recognition task. Specifically, the residual feature distillation treats the frozen CLIP model as a teacher to maintain the generalizability exhibited by the original CLIP and supervises the feature learning for the extraction of video-specific features to bridge the gap between images and videos. Meanwhile, it uses a residual sub-network for feature distillation to reach a balance between the two distinct objectives of learning generalizable and video-specific features. We extensively evaluate FROSTER on open-vocabulary action recognition benchmarks under both base-to-novel and cross-dataset settings. FROSTER consistently achieves state-of-the-art performance on all datasets across the board. Project page: https://visual-ai.github.io/froster.
Poincaré ResNet
This paper introduces an end-to-end residual network that operates entirely on the Poincar\'e ball model of hyperbolic space. Hyperbolic learning has recently shown great potential for visual understanding, but is currently only performed in the penultimate layer(s) of deep networks. All visual representations are still learned through standard Euclidean networks. In this paper we investigate how to learn hyperbolic representations of visual data directly from the pixel-level. We propose Poincar\'e ResNet, a hyperbolic counterpart of the celebrated residual network, starting from Poincar\'e 2D convolutions up to Poincar\'e residual connections. We identify three roadblocks for training convolutional networks entirely in hyperbolic space and propose a solution for each: (i) Current hyperbolic network initializations collapse to the origin, limiting their applicability in deeper networks. We provide an identity-based initialization that preserves norms over many layers. (ii) Residual networks rely heavily on batch normalization, which comes with expensive Fr\'echet mean calculations in hyperbolic space. We introduce Poincar\'e midpoint batch normalization as a faster and equally effective alternative. (iii) Due to the many intermediate operations in Poincar\'e layers, we lastly find that the computation graphs of deep learning libraries blow up, limiting our ability to train on deep hyperbolic networks. We provide manual backward derivations of core hyperbolic operations to maintain manageable computation graphs.
Testing the Cosmological Principle: Astrometric Limits on Systemic Motion of Quasars at Different Cosmological Epochs
A sample of 60,410 bona fide optical quasars with astrometric proper motions in Gaia EDR3 and spectroscopic redshifts above 0.5 in an oval 8400 square degree area of the sky is constructed. Using orthogonal Zernike functions of polar coordinates, the proper motion fields are fitted in a weighted least-squares adjustment of the entire sample and of six equal bins of sorted redshifts. The overall fit with 37 Zernike functions reveals a statistically significant pattern, which is likely to be of instrumental origin. The main feature of this pattern is a chain of peaks and dips mostly in the R.A. component with an amplitude of 25~muas yr^{-1}. This field is subtracted from each of the six analogous fits for quasars grouped by redshifts covering the range 0.5 through 7.03, with median values 0.72, 1.00, 1.25, 1.52, 1.83, 2.34. The resulting residual patterns are noisier, with formal uncertainties up to 8~muas yr^{-1} in the central part of the area. We detect a single high-confidence Zernike term for R.A. proper motion components of quasars with redshifts around 1.52 representing a general gradient of 30 muas yr^{-1} over 150degr on the sky. We do not find any small- or medium-scale systemic variations of the residual proper motion field as functions of redshift above the 2.5,sigma significance level.
On Explaining Knowledge Distillation: Measuring and Visualising the Knowledge Transfer Process
Knowledge distillation (KD) remains challenging due to the opaque nature of the knowledge transfer process from a Teacher to a Student, making it difficult to address certain issues related to KD. To address this, we proposed UniCAM, a novel gradient-based visual explanation method, which effectively interprets the knowledge learned during KD. Our experimental results demonstrate that with the guidance of the Teacher's knowledge, the Student model becomes more efficient, learning more relevant features while discarding those that are not relevant. We refer to the features learned with the Teacher's guidance as distilled features and the features irrelevant to the task and ignored by the Student as residual features. Distilled features focus on key aspects of the input, such as textures and parts of objects. In contrast, residual features demonstrate more diffused attention, often targeting irrelevant areas, including the backgrounds of the target objects. In addition, we proposed two novel metrics: the feature similarity score (FSS) and the relevance score (RS), which quantify the relevance of the distilled knowledge. Experiments on the CIFAR10, ASIRRA, and Plant Disease datasets demonstrate that UniCAM and the two metrics offer valuable insights to explain the KD process.
ResMLP: Feedforward networks for image classification with data-efficient training
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We also train ResMLP models in a self-supervised setup, to further remove priors from employing a labelled dataset. Finally, by adapting our model to machine translation we achieve surprisingly good results. We share pre-trained models and our code based on the Timm library.
Three things everyone should know about Vision Transformers
After their initial success in natural language processing, transformer architectures have rapidly gained traction in computer vision, providing state-of-the-art results for tasks such as image classification, detection, segmentation, and video analysis. We offer three insights based on simple and easy to implement variants of vision transformers. (1) The residual layers of vision transformers, which are usually processed sequentially, can to some extent be processed efficiently in parallel without noticeably affecting the accuracy. (2) Fine-tuning the weights of the attention layers is sufficient to adapt vision transformers to a higher resolution and to other classification tasks. This saves compute, reduces the peak memory consumption at fine-tuning time, and allows sharing the majority of weights across tasks. (3) Adding MLP-based patch pre-processing layers improves Bert-like self-supervised training based on patch masking. We evaluate the impact of these design choices using the ImageNet-1k dataset, and confirm our findings on the ImageNet-v2 test set. Transfer performance is measured across six smaller datasets.
Diagnosis of Breast Cancer Based on Modern Mammography using Hybrid Transfer Learning
Breast cancer is a common cancer for women. Early detection of breast cancer can considerably increase the survival rate of women. This paper mainly focuses on transfer learning process to detect breast cancer. Modified VGG (MVGG), residual network, mobile network is proposed and implemented in this paper. DDSM dataset is used in this paper. Experimental results show that our proposed hybrid transfers learning model (Fusion of MVGG16 and ImageNet) provides an accuracy of 88.3% where the number of epoch is 15. On the other hand, only modified VGG 16 architecture (MVGG 16) provides an accuracy 80.8% and MobileNet provides an accuracy of 77.2%. So, it is clearly stated that the proposed hybrid pre-trained network outperforms well compared to single architecture. This architecture can be considered as an effective tool for the radiologists in order to reduce the false negative and false positive rate. Therefore, the efficiency of mammography analysis will be improved.
ReZero is All You Need: Fast Convergence at Large Depth
Deep networks often suffer from vanishing or exploding gradients due to inefficient signal propagation, leading to long training times or convergence difficulties. Various architecture designs, sophisticated residual-style networks, and initialization schemes have been shown to improve deep signal propagation. Recently, Pennington et al. used free probability theory to show that dynamical isometry plays an integral role in efficient deep learning. We show that the simplest architecture change of gating each residual connection using a single zero-initialized parameter satisfies initial dynamical isometry and outperforms more complex approaches. Although much simpler than its predecessors, this gate enables training thousands of fully connected layers with fast convergence and better test performance for ResNets trained on CIFAR-10. We apply this technique to language modeling and find that we can easily train 120-layer Transformers. When applied to 12 layer Transformers, it converges 56% faster on enwiki8.
3DCNN-DQN-RNN: A Deep Reinforcement Learning Framework for Semantic Parsing of Large-scale 3D Point Clouds
Semantic parsing of large-scale 3D point clouds is an important research topic in computer vision and remote sensing fields. Most existing approaches utilize hand-crafted features for each modality independently and combine them in a heuristic manner. They often fail to consider the consistency and complementary information among features adequately, which makes them difficult to capture high-level semantic structures. The features learned by most of the current deep learning methods can obtain high-quality image classification results. However, these methods are hard to be applied to recognize 3D point clouds due to unorganized distribution and various point density of data. In this paper, we propose a 3DCNN-DQN-RNN method which fuses the 3D convolutional neural network (CNN), Deep Q-Network (DQN) and Residual recurrent neural network (RNN) for an efficient semantic parsing of large-scale 3D point clouds. In our method, an eye window under control of the 3D CNN and DQN can localize and segment the points of the object class efficiently. The 3D CNN and Residual RNN further extract robust and discriminative features of the points in the eye window, and thus greatly enhance the parsing accuracy of large-scale point clouds. Our method provides an automatic process that maps the raw data to the classification results. It also integrates object localization, segmentation and classification into one framework. Experimental results demonstrate that the proposed method outperforms the state-of-the-art point cloud classification methods.
Towards Affordance-Aware Robotic Dexterous Grasping with Human-like Priors
A dexterous hand capable of generalizable grasping objects is fundamental for the development of general-purpose embodied AI. However, previous methods focus narrowly on low-level grasp stability metrics, neglecting affordance-aware positioning and human-like poses which are crucial for downstream manipulation. To address these limitations, we propose AffordDex, a novel framework with two-stage training that learns a universal grasping policy with an inherent understanding of both motion priors and object affordances. In the first stage, a trajectory imitator is pre-trained on a large corpus of human hand motions to instill a strong prior for natural movement. In the second stage, a residual module is trained to adapt these general human-like motions to specific object instances. This refinement is critically guided by two components: our Negative Affordance-aware Segmentation (NAA) module, which identifies functionally inappropriate contact regions, and a privileged teacher-student distillation process that ensures the final vision-based policy is highly successful. Extensive experiments demonstrate that AffordDex not only achieves universal dexterous grasping but also remains remarkably human-like in posture and functionally appropriate in contact location. As a result, AffordDex significantly outperforms state-of-the-art baselines across seen objects, unseen instances, and even entirely novel categories.
On Architectural Compression of Text-to-Image Diffusion Models
Exceptional text-to-image (T2I) generation results of Stable Diffusion models (SDMs) come with substantial computational demands. To resolve this issue, recent research on efficient SDMs has prioritized reducing the number of sampling steps and utilizing network quantization. Orthogonal to these directions, this study highlights the power of classical architectural compression for general-purpose T2I synthesis by introducing block-removed knowledge-distilled SDMs (BK-SDMs). We eliminate several residual and attention blocks from the U-Net of SDMs, obtaining over a 30% reduction in the number of parameters, MACs per sampling step, and latency. We conduct distillation-based pretraining with only 0.22M LAION pairs (fewer than 0.1% of the full training pairs) on a single A100 GPU. Despite being trained with limited resources, our compact models can imitate the original SDM by benefiting from transferred knowledge and achieve competitive results against larger multi-billion parameter models on the zero-shot MS-COCO benchmark. Moreover, we demonstrate the applicability of our lightweight pretrained models in personalized generation with DreamBooth finetuning.
MambaIR: A Simple Baseline for Image Restoration with State-Space Model
Recent years have witnessed great progress in image restoration thanks to the advancements in modern deep neural networks e.g. Convolutional Neural Network and Transformer. However, existing restoration backbones are usually limited due to the inherent local reductive bias or quadratic computational complexity. Recently, Selective Structured State Space Model e.g., Mamba, has shown great potential for long-range dependencies modeling with linear complexity, but it is still under-explored in low-level computer vision. In this work, we introduce a simple but strong benchmark model, named MambaIR, for image restoration. In detail, we propose the Residual State Space Block as the core component, which employs convolution and channel attention to enhance the capabilities of the vanilla Mamba. In this way, our MambaIR takes advantage of local patch recurrence prior as well as channel interaction to produce restoration-specific feature representation. Extensive experiments demonstrate the superiority of our method, for example, MambaIR outperforms Transformer-based baseline SwinIR by up to 0.36dB, using similar computational cost but with a global receptive field. Code is available at https://github.com/csguoh/MambaIR.
Real Image Super Resolution Via Heterogeneous Model Ensemble using GP-NAS
With advancement in deep neural network (DNN), recent state-of-the-art (SOTA) image superresolution (SR) methods have achieved impressive performance using deep residual network with dense skip connections. While these models perform well on benchmark dataset where low-resolution (LR) images are constructed from high-resolution (HR) references with known blur kernel, real image SR is more challenging when both images in the LR-HR pair are collected from real cameras. Based on existing dense residual networks, a Gaussian process based neural architecture search (GP-NAS) scheme is utilized to find candidate network architectures using a large search space by varying the number of dense residual blocks, the block size and the number of features. A suite of heterogeneous models with diverse network structure and hyperparameter are selected for model-ensemble to achieve outstanding performance in real image SR. The proposed method won the first place in all three tracks of the AIM 2020 Real Image Super-Resolution Challenge.
BeTAIL: Behavior Transformer Adversarial Imitation Learning from Human Racing Gameplay
Imitation learning learns a policy from demonstrations without requiring hand-designed reward functions. In many robotic tasks, such as autonomous racing, imitated policies must model complex environment dynamics and human decision-making. Sequence modeling is highly effective in capturing intricate patterns of motion sequences but struggles to adapt to new environments or distribution shifts that are common in real-world robotics tasks. In contrast, Adversarial Imitation Learning (AIL) can mitigate this effect, but struggles with sample inefficiency and handling complex motion patterns. Thus, we propose BeTAIL: Behavior Transformer Adversarial Imitation Learning, which combines a Behavior Transformer (BeT) policy from human demonstrations with online AIL. BeTAIL adds an AIL residual policy to the BeT policy to model the sequential decision-making process of human experts and correct for out-of-distribution states or shifts in environment dynamics. We test BeTAIL on three challenges with expert-level demonstrations of real human gameplay in Gran Turismo Sport. Our proposed residual BeTAIL reduces environment interactions and improves racing performance and stability, even when the BeT is pretrained on different tracks than downstream learning. Videos and code available at: https://sites.google.com/berkeley.edu/BeTAIL/home.
S2LIC: Learned Image Compression with the SwinV2 Block, Adaptive Channel-wise and Global-inter Attention Context
Recently, deep learning technology has been successfully applied in the field of image compression, leading to superior rate-distortion performance. It is crucial to design an effective and efficient entropy model to estimate the probability distribution of the latent representation. However, the majority of entropy models primarily focus on one-dimensional correlation processing between channel and spatial information. In this paper, we propose an Adaptive Channel-wise and Global-inter attention Context (ACGC) entropy model, which can efficiently achieve dual feature aggregation in both inter-slice and intraslice contexts. Specifically, we divide the latent representation into different slices and then apply the ACGC model in a parallel checkerboard context to achieve faster decoding speed and higher rate-distortion performance. In order to capture redundant global features across different slices, we utilize deformable attention in adaptive global-inter attention to dynamically refine the attention weights based on the actual spatial relationships and context. Furthermore, in the main transformation structure, we propose a high-performance S2LIC model. We introduce the residual SwinV2 Transformer model to capture global feature information and utilize a dense block network as the feature enhancement module to improve the nonlinear representation of the image within the transformation structure. Experimental results demonstrate that our method achieves faster encoding and decoding speeds and outperforms VTM-17.1 and some recent learned image compression methods in both PSNR and MS-SSIM metrics.
StyleSinger: Style Transfer for Out-of-Domain Singing Voice Synthesis
Style transfer for out-of-domain (OOD) singing voice synthesis (SVS) focuses on generating high-quality singing voices with unseen styles (such as timbre, emotion, pronunciation, and articulation skills) derived from reference singing voice samples. However, the endeavor to model the intricate nuances of singing voice styles is an arduous task, as singing voices possess a remarkable degree of expressiveness. Moreover, existing SVS methods encounter a decline in the quality of synthesized singing voices in OOD scenarios, as they rest upon the assumption that the target vocal attributes are discernible during the training phase. To overcome these challenges, we propose StyleSinger, the first singing voice synthesis model for zero-shot style transfer of out-of-domain reference singing voice samples. StyleSinger incorporates two critical approaches for enhanced effectiveness: 1) the Residual Style Adaptor (RSA) which employs a residual quantization module to capture diverse style characteristics in singing voices, and 2) the Uncertainty Modeling Layer Normalization (UMLN) to perturb the style attributes within the content representation during the training phase and thus improve the model generalization. Our extensive evaluations in zero-shot style transfer undeniably establish that StyleSinger outperforms baseline models in both audio quality and similarity to the reference singing voice samples. Access to singing voice samples can be found at https://stylesinger.github.io/.
R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis
Recent research explosion on Neural Radiance Field (NeRF) shows the encouraging potential to represent complex scenes with neural networks. One major drawback of NeRF is its prohibitive inference time: Rendering a single pixel requires querying the NeRF network hundreds of times. To resolve it, existing efforts mainly attempt to reduce the number of required sampled points. However, the problem of iterative sampling still exists. On the other hand, Neural Light Field (NeLF) presents a more straightforward representation over NeRF in novel view synthesis -- the rendering of a pixel amounts to one single forward pass without ray-marching. In this work, we present a deep residual MLP network (88 layers) to effectively learn the light field. We show the key to successfully learning such a deep NeLF network is to have sufficient data, for which we transfer the knowledge from a pre-trained NeRF model via data distillation. Extensive experiments on both synthetic and real-world scenes show the merits of our method over other counterpart algorithms. On the synthetic scenes, we achieve 26-35x FLOPs reduction (per camera ray) and 28-31x runtime speedup, meanwhile delivering significantly better (1.4-2.8 dB average PSNR improvement) rendering quality than NeRF without any customized parallelism requirement.
MMFformer: Multimodal Fusion Transformer Network for Depression Detection
Depression is a serious mental health illness that significantly affects an individual's well-being and quality of life, making early detection crucial for adequate care and treatment. Detecting depression is often difficult, as it is based primarily on subjective evaluations during clinical interviews. Hence, the early diagnosis of depression, thanks to the content of social networks, has become a prominent research area. The extensive and diverse nature of user-generated information poses a significant challenge, limiting the accurate extraction of relevant temporal information and the effective fusion of data across multiple modalities. This paper introduces MMFformer, a multimodal depression detection network designed to retrieve depressive spatio-temporal high-level patterns from multimodal social media information. The transformer network with residual connections captures spatial features from videos, and a transformer encoder is exploited to design important temporal dynamics in audio. Moreover, the fusion architecture fused the extracted features through late and intermediate fusion strategies to find out the most relevant intermodal correlations among them. Finally, the proposed network is assessed on two large-scale depression detection datasets, and the results clearly reveal that it surpasses existing state-of-the-art approaches, improving the F1-Score by 13.92% for D-Vlog dataset and 7.74% for LMVD dataset. The code is made available publicly at https://github.com/rezwanh001/Large-Scale-Multimodal-Depression-Detection.
SecoustiCodec: Cross-Modal Aligned Streaming Single-Codecbook Speech Codec
Speech codecs serve as a crucial bridge in unifying speech and text language models. Existing codec methods face several challenges in semantic encoding, such as residual paralinguistic information (e.g., timbre, emotion), insufficient semantic completeness, limited reconstruction capability, and lack of support for streaming. To address these challenges, we propose SecoustiCodec, a cross-modal aligned low-bitrate streaming speech codec that disentangles semantic and paralinguistic information in a single-codebook space. To ensure semantic completeness and reconstruction fidelity, paralinguistic encoding is introduced to bridge the information gap between semantic and acoustic encoding. A semantic-only efficient quantization method based on VAE (Variational Autoencoder) and FSQ (Finite Scalar Quantization) is proposed. This approach alleviates the long-tail distribution problem of tokens while maintaining high codebook utilization. A semantic disentanglement method based on contrastive learning is proposed, which aligns text and speech in a joint multimodal frame-level space, effectively removing paralinguistic information from semantic encoding. An acoustic-constrained multi-stage optimization strategy is proposed to ensure robust and stable convergence. Figure~fig:pesq_kbps_below_2kbps shows SecoustiCodec achieves SOTA (state-of-the-art) reconstruction quality (PESQ) of 1.77/2.58 at 0.27/1 kbps. The code and model weights for SecoustiCodec will be open-sourced upon the completion of the peer-review process. We've open-sourced SecoustiCodec's demo, code, and model weights.
CLaM-TTS: Improving Neural Codec Language Model for Zero-Shot Text-to-Speech
With the emergence of neural audio codecs, which encode multiple streams of discrete tokens from audio, large language models have recently gained attention as a promising approach for zero-shot Text-to-Speech (TTS) synthesis. Despite the ongoing rush towards scaling paradigms, audio tokenization ironically amplifies the scalability challenge, stemming from its long sequence length and the complexity of modelling the multiple sequences. To mitigate these issues, we present CLaM-TTS that employs a probabilistic residual vector quantization to (1) achieve superior compression in the token length, and (2) allow a language model to generate multiple tokens at once, thereby eliminating the need for cascaded modeling to handle the number of token streams. Our experimental results demonstrate that CLaM-TTS is better than or comparable to state-of-the-art neural codec-based TTS models regarding naturalness, intelligibility, speaker similarity, and inference speed. In addition, we examine the impact of the pretraining extent of the language models and their text tokenization strategies on performances.
Progressive Knowledge Distillation Of Stable Diffusion XL Using Layer Level Loss
Stable Diffusion XL (SDXL) has become the best open source text-to-image model (T2I) for its versatility and top-notch image quality. Efficiently addressing the computational demands of SDXL models is crucial for wider reach and applicability. In this work, we introduce two scaled-down variants, Segmind Stable Diffusion (SSD-1B) and Segmind-Vega, with 1.3B and 0.74B parameter UNets, respectively, achieved through progressive removal using layer-level losses focusing on reducing the model size while preserving generative quality. We release these models weights at https://hf.co/Segmind. Our methodology involves the elimination of residual networks and transformer blocks from the U-Net structure of SDXL, resulting in significant reductions in parameters, and latency. Our compact models effectively emulate the original SDXL by capitalizing on transferred knowledge, achieving competitive results against larger multi-billion parameter SDXL. Our work underscores the efficacy of knowledge distillation coupled with layer-level losses in reducing model size while preserving the high-quality generative capabilities of SDXL, thus facilitating more accessible deployment in resource-constrained environments.
NeuGrasp: Generalizable Neural Surface Reconstruction with Background Priors for Material-Agnostic Object Grasp Detection
Robotic grasping in scenes with transparent and specular objects presents great challenges for methods relying on accurate depth information. In this paper, we introduce NeuGrasp, a neural surface reconstruction method that leverages background priors for material-agnostic grasp detection. NeuGrasp integrates transformers and global prior volumes to aggregate multi-view features with spatial encoding, enabling robust surface reconstruction in narrow and sparse viewing conditions. By focusing on foreground objects through residual feature enhancement and refining spatial perception with an occupancy-prior volume, NeuGrasp excels in handling objects with transparent and specular surfaces. Extensive experiments in both simulated and real-world scenarios show that NeuGrasp outperforms state-of-the-art methods in grasping while maintaining comparable reconstruction quality. More details are available at https://neugrasp.github.io/.
GEDepth: Ground Embedding for Monocular Depth Estimation
Monocular depth estimation is an ill-posed problem as the same 2D image can be projected from infinite 3D scenes. Although the leading algorithms in this field have reported significant improvement, they are essentially geared to the particular compound of pictorial observations and camera parameters (i.e., intrinsics and extrinsics), strongly limiting their generalizability in real-world scenarios. To cope with this challenge, this paper proposes a novel ground embedding module to decouple camera parameters from pictorial cues, thus promoting the generalization capability. Given camera parameters, the proposed module generates the ground depth, which is stacked with the input image and referenced in the final depth prediction. A ground attention is designed in the module to optimally combine ground depth with residual depth. Our ground embedding is highly flexible and lightweight, leading to a plug-in module that is amenable to be integrated into various depth estimation networks. Experiments reveal that our approach achieves the state-of-the-art results on popular benchmarks, and more importantly, renders significant generalization improvement on a wide range of cross-domain tests.
Learning Enriched Features for Real Image Restoration and Enhancement
With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography, medical imaging, and remote sensing. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for a variety of image processing tasks, including image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNet.
Lightweight Image Super-Resolution with Adaptive Weighted Learning Network
Deep learning has been successfully applied to the single-image super-resolution (SISR) task with great performance in recent years. However, most convolutional neural network based SR models require heavy computation, which limit their real-world applications. In this work, a lightweight SR network, named Adaptive Weighted Super-Resolution Network (AWSRN), is proposed for SISR to address this issue. A novel local fusion block (LFB) is designed in AWSRN for efficient residual learning, which consists of stacked adaptive weighted residual units (AWRU) and a local residual fusion unit (LRFU). Moreover, an adaptive weighted multi-scale (AWMS) module is proposed to make full use of features in reconstruction layer. AWMS consists of several different scale convolutions, and the redundancy scale branch can be removed according to the contribution of adaptive weights in AWMS for lightweight network. The experimental results on the commonly used datasets show that the proposed lightweight AWSRN achieves superior performance on x2, x3, x4, and x8 scale factors to state-of-the-art methods with similar parameters and computational overhead. Code is avaliable at: https://github.com/ChaofWang/AWSRN
HyperZ$\cdot$Z$\cdot$W Operator Connects Slow-Fast Networks for Full Context Interaction
The self-attention mechanism utilizes large implicit weight matrices, programmed through dot product-based activations with very few trainable parameters, to enable long sequence modeling. In this paper, we investigate the possibility of discarding residual learning by employing large implicit kernels to achieve full context interaction at each layer of the network. To accomplish it, we introduce coordinate-based implicit MLPs as a slow network to generate hyper-kernels for another fast convolutional network. To get context-varying weights for fast dynamic encoding, we propose a HyperZ{cdotZ{cdot}W} operator that connects hyper-kernels (W) and hidden activations (Z) through simple elementwise multiplication, followed by convolution of Z using the context-dependent W. Based on this design, we present a novel Terminator architecture that integrates hyper-kernels of different sizes to produce multi-branch hidden representations for enhancing the feature extraction capability of each layer. Additionally, a bottleneck layer is employed to compress the concatenated channels, allowing only valuable information to propagate to the subsequent layers. Notably, our model incorporates several innovative components and exhibits excellent properties, such as introducing local feedback error for updating the slow network, stable zero-mean features, faster training convergence, and fewer model parameters. Extensive experimental results on pixel-level 1D and 2D image classification benchmarks demonstrate the superior performance of our architecture.
Decoding Human Activities: Analyzing Wearable Accelerometer and Gyroscope Data for Activity Recognition
A person's movement or relative positioning effectively generates raw electrical signals that can be read by computing machines to apply various manipulative techniques for the classification of different human activities. In this paper, a stratified multi-structural approach based on a Residual network ensembled with Residual MobileNet is proposed, termed as FusionActNet. The proposed method involves using carefully designed Residual blocks for classifying the static and dynamic activities separately because they have clear and distinct characteristics that set them apart. These networks are trained independently, resulting in two specialized and highly accurate models. These models excel at recognizing activities within a specific superclass by taking advantage of the unique algorithmic benefits of architectural adjustments. Afterward, these two ResNets are passed through a weighted ensemble-based Residual MobileNet. Subsequently, this ensemble proficiently discriminates between a specific static and a specific dynamic activity, which were previously identified based on their distinct feature characteristics in the earlier stage. The proposed model is evaluated using two publicly accessible datasets; namely, UCI HAR and Motion-Sense. Therein, it successfully handled the highly confusing cases of data overlap. Therefore, the proposed approach achieves a state-of-the-art accuracy of 96.71% and 95.35% in the UCI HAR and Motion-Sense datasets respectively.
SwinIR: Image Restoration Using Swin Transformer
Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from low-quality images (e.g., downscaled, noisy and compressed images). While state-of-the-art image restoration methods are based on convolutional neural networks, few attempts have been made with Transformers which show impressive performance on high-level vision tasks. In this paper, we propose a strong baseline model SwinIR for image restoration based on the Swin Transformer. SwinIR consists of three parts: shallow feature extraction, deep feature extraction and high-quality image reconstruction. In particular, the deep feature extraction module is composed of several residual Swin Transformer blocks (RSTB), each of which has several Swin Transformer layers together with a residual connection. We conduct experiments on three representative tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. Experimental results demonstrate that SwinIR outperforms state-of-the-art methods on different tasks by up to 0.14\sim0.45dB, while the total number of parameters can be reduced by up to 67%.
Enhancing Fine-grained Image Classification through Attentive Batch Training
Fine-grained image classification, which is a challenging task in computer vision, requires precise differentiation among visually similar object categories. In this paper, we propose 1) a novel module called Residual Relationship Attention (RRA) that leverages the relationships between images within each training batch to effectively integrate visual feature vectors of batch images and 2) a novel technique called Relationship Position Encoding (RPE), which encodes the positions of relationships between original images in a batch and effectively preserves the relationship information between images within the batch. Additionally, we design a novel framework, namely Relationship Batch Integration (RBI), which utilizes RRA in conjunction with RPE, allowing the discernment of vital visual features that may remain elusive when examining a singular image representative of a particular class. Through extensive experiments, our proposed method demonstrates significant improvements in the accuracy of different fine-grained classifiers, with an average increase of (+2.78%) and (+3.83%) on the CUB200-2011 and Stanford Dog datasets, respectively, while achieving a state-of-the-art results (95.79%) on the Stanford Dog dataset. Despite not achieving the same level of improvement as in fine-grained image classification, our method still demonstrates its prowess in leveraging general image classification by attaining a state-of-the-art result of (93.71%) on the Tiny-Imagenet dataset. Furthermore, our method serves as a plug-in refinement module and can be easily integrated into different networks.
Language-Codec: Reducing the Gaps Between Discrete Codec Representation and Speech Language Models
In recent years, large language models have achieved significant success in generative tasks (e.g., speech cloning and audio generation) related to speech, audio, music, and other signal domains. A crucial element of these models is the discrete acoustic codecs, which serves as an intermediate representation replacing the mel-spectrogram. However, there exist several gaps between discrete codecs and downstream speech language models. Specifically, 1) most codec models are trained on only 1,000 hours of data, whereas most speech language models are trained on 60,000 hours; 2) Achieving good reconstruction performance requires the utilization of numerous codebooks, which increases the burden on downstream speech language models; 3) The initial channel of the codebooks contains excessive information, making it challenging to directly generate acoustic tokens from weakly supervised signals such as text in downstream tasks. Consequently, leveraging the characteristics of speech language models, we propose Language-Codec. In the Language-Codec, we introduce a Mask Channel Residual Vector Quantization (MCRVQ) mechanism along with improved Fourier transform structures and larger training datasets to address the aforementioned gaps. We compare our method with competing audio compression algorithms and observe significant outperformance across extensive evaluations. Furthermore, we also validate the efficiency of the Language-Codec on downstream speech language models. The source code and pre-trained models can be accessed at https://github.com/jishengpeng/languagecodec .
Beyond First-Order Tweedie: Solving Inverse Problems using Latent Diffusion
Sampling from the posterior distribution poses a major computational challenge in solving inverse problems using latent diffusion models. Common methods rely on Tweedie's first-order moments, which are known to induce a quality-limiting bias. Existing second-order approximations are impractical due to prohibitive computational costs, making standard reverse diffusion processes intractable for posterior sampling. This paper introduces Second-order Tweedie sampler from Surrogate Loss (STSL), a novel sampler that offers efficiency comparable to first-order Tweedie with a tractable reverse process using second-order approximation. Our theoretical results reveal that the second-order approximation is lower bounded by our surrogate loss that only requires O(1) compute using the trace of the Hessian, and by the lower bound we derive a new drift term to make the reverse process tractable. Our method surpasses SoTA solvers PSLD and P2L, achieving 4X and 8X reduction in neural function evaluations, respectively, while notably enhancing sampling quality on FFHQ, ImageNet, and COCO benchmarks. In addition, we show STSL extends to text-guided image editing and addresses residual distortions present from corrupted images in leading text-guided image editing methods. To our best knowledge, this is the first work to offer an efficient second-order approximation in solving inverse problems using latent diffusion and editing real-world images with corruptions.
U-RED: Unsupervised 3D Shape Retrieval and Deformation for Partial Point Clouds
In this paper, we propose U-RED, an Unsupervised shape REtrieval and Deformation pipeline that takes an arbitrary object observation as input, typically captured by RGB images or scans, and jointly retrieves and deforms the geometrically similar CAD models from a pre-established database to tightly match the target. Considering existing methods typically fail to handle noisy partial observations, U-RED is designed to address this issue from two aspects. First, since one partial shape may correspond to multiple potential full shapes, the retrieval method must allow such an ambiguous one-to-many relationship. Thereby U-RED learns to project all possible full shapes of a partial target onto the surface of a unit sphere. Then during inference, each sampling on the sphere will yield a feasible retrieval. Second, since real-world partial observations usually contain noticeable noise, a reliable learned metric that measures the similarity between shapes is necessary for stable retrieval. In U-RED, we design a novel point-wise residual-guided metric that allows noise-robust comparison. Extensive experiments on the synthetic datasets PartNet, ComplementMe and the real-world dataset Scan2CAD demonstrate that U-RED surpasses existing state-of-the-art approaches by 47.3%, 16.7% and 31.6% respectively under Chamfer Distance.
On the infinite-depth limit of finite-width neural networks
In this paper, we study the infinite-depth limit of finite-width residual neural networks with random Gaussian weights. With proper scaling, we show that by fixing the width and taking the depth to infinity, the pre-activations converge in distribution to a zero-drift diffusion process. Unlike the infinite-width limit where the pre-activation converge weakly to a Gaussian random variable, we show that the infinite-depth limit yields different distributions depending on the choice of the activation function. We document two cases where these distributions have closed-form (different) expressions. We further show an intriguing change of regime phenomenon of the post-activation norms when the width increases from 3 to 4. Lastly, we study the sequential limit infinite-depth-then-infinite-width and compare it with the more commonly studied infinite-width-then-infinite-depth limit.
Ensemble One-dimensional Convolution Neural Networks for Skeleton-based Action Recognition
In this paper, we proposed a effective but extensible residual one-dimensional convolution neural network as base network, based on the this network, we proposed four subnets to explore the features of skeleton sequences from each aspect. Given a skeleton sequences, the spatial information are encoded into the skeleton joints coordinate in a frame and the temporal information are present by multiple frames. Limited by the skeleton sequence representations, two-dimensional convolution neural network cannot be used directly, we chose one-dimensional convolution layer as the basic layer. Each sub network could extract discriminative features from different aspects. Our first subnet is a two-stream network which could explore both temporal and spatial information. The second is a body-parted network, which could gain micro spatial features and macro temporal features. The third one is an attention network, the main contribution of which is to focus the key frames and feature channels which high related with the action classes in a skeleton sequence. One frame-difference network, as the last subnet, mainly processes the joints changes between the consecutive frames. Four subnets ensemble together by late fusion, the key problem of ensemble method is each subnet should have a certain performance and between the subnets, there are diversity existing. Each subnet shares a wellperformance basenet and differences between subnets guaranteed the diversity. Experimental results show that the ensemble network gets a state-of-the-art performance on three widely used datasets.
Deep Networks with Stochastic Depth
Very deep convolutional networks with hundreds of layers have led to significant reductions in error on competitive benchmarks. Although the unmatched expressiveness of the many layers can be highly desirable at test time, training very deep networks comes with its own set of challenges. The gradients can vanish, the forward flow often diminishes, and the training time can be painfully slow. To address these problems, we propose stochastic depth, a training procedure that enables the seemingly contradictory setup to train short networks and use deep networks at test time. We start with very deep networks but during training, for each mini-batch, randomly drop a subset of layers and bypass them with the identity function. This simple approach complements the recent success of residual networks. It reduces training time substantially and improves the test error significantly on almost all data sets that we used for evaluation. With stochastic depth we can increase the depth of residual networks even beyond 1200 layers and still yield meaningful improvements in test error (4.91% on CIFAR-10).
JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention
We propose Joint MLP/Attention (JoMA) dynamics, a novel mathematical framework to understand the training procedure of multilayer Transformer architectures. This is achieved by integrating out the self-attention layer in Transformers, producing a modified dynamics of MLP layers only. JoMA removes unrealistic assumptions in previous analysis (e.g., lack of residual connection) and predicts that the attention first becomes sparse (to learn salient tokens), then dense (to learn less salient tokens) in the presence of nonlinear activations, while in the linear case, it is consistent with existing works that show attention becomes sparse over time. We leverage JoMA to qualitatively explains how tokens are combined to form hierarchies in multilayer Transformers, when the input tokens are generated by a latent hierarchical generative model. Experiments on models trained from real-world dataset (Wikitext2/Wikitext103) and various pre-trained models (OPT, Pythia) verify our theoretical findings.
Learning Graph Quantized Tokenizers for Transformers
Transformers serve as the backbone architectures of Foundational Models, where a domain-specific tokenizer helps them adapt to various domains. Graph Transformers (GTs) have recently emerged as a leading model in geometric deep learning, outperforming Graph Neural Networks (GNNs) in various graph learning tasks. However, the development of tokenizers for graphs has lagged behind other modalities, with existing approaches relying on heuristics or GNNs co-trained with Transformers. To address this, we introduce GQT (Graph Quantized Tokenizer), which decouples tokenizer training from Transformer training by leveraging multi-task graph self-supervised learning, yielding robust and generalizable graph tokens. Furthermore, the GQT utilizes Residual Vector Quantization (RVQ) to learn hierarchical discrete tokens, resulting in significantly reduced memory requirements and improved generalization capabilities. By combining the GQT with token modulation, a Transformer encoder achieves state-of-the-art performance on 16 out of 18 benchmarks, including large-scale homophilic and heterophilic datasets. The code is available at: https://github.com/limei0307/graph-tokenizer
Do Language Models Use Their Depth Efficiently?
Modern LLMs are increasingly deep, and depth correlates with performance, albeit with diminishing returns. However, do these models use their depth efficiently? Do they compose more features to create higher-order computations that are impossible in shallow models, or do they merely spread the same kinds of computation out over more layers? To address these questions, we analyze the residual stream of the Llama 3.1 and Qwen 3 family of models. We find: First, comparing the output of the sublayers to the residual stream reveals that layers in the second half contribute much less than those in the first half, with a clear phase transition between the two halves. Second, skipping layers in the second half has a much smaller effect on future computations and output predictions. Third, for multihop tasks, we are unable to find evidence that models are using increased depth to compose subresults in examples involving many hops. Fourth, we seek to directly address whether deeper models are using their additional layers to perform new kinds of computation. To do this, we train linear maps from the residual stream of a shallow model to a deeper one. We find that layers with the same relative depth map best to each other, suggesting that the larger model simply spreads the same computations out over its many layers. All this evidence suggests that deeper models are not using their depth to learn new kinds of computation, but only using the greater depth to perform more fine-grained adjustments to the residual. This may help explain why increasing scale leads to diminishing returns for stacked Transformer architectures.
PersonaHOI: Effortlessly Improving Personalized Face with Human-Object Interaction Generation
We introduce PersonaHOI, a training- and tuning-free framework that fuses a general StableDiffusion model with a personalized face diffusion (PFD) model to generate identity-consistent human-object interaction (HOI) images. While existing PFD models have advanced significantly, they often overemphasize facial features at the expense of full-body coherence, PersonaHOI introduces an additional StableDiffusion (SD) branch guided by HOI-oriented text inputs. By incorporating cross-attention constraints in the PFD branch and spatial merging at both latent and residual levels, PersonaHOI preserves personalized facial details while ensuring interactive non-facial regions. Experiments, validated by a novel interaction alignment metric, demonstrate the superior realism and scalability of PersonaHOI, establishing a new standard for practical personalized face with HOI generation. Our code will be available at https://github.com/JoyHuYY1412/PersonaHOI
CNN-based MultiChannel End-to-End Speech Recognition for everyday home environments
Casual conversations involving multiple speakers and noises from surrounding devices are common in everyday environments, which degrades the performances of automatic speech recognition systems. These challenging characteristics of environments are the target of the CHiME-5 challenge. By employing a convolutional neural network (CNN)-based multichannel end-to-end speech recognition system, this study attempts to overcome the presents difficulties in everyday environments. The system comprises of an attention-based encoder-decoder neural network that directly generates a text as an output from a sound input. The multichannel CNN encoder, which uses residual connections and batch renormalization, is trained with augmented data, including white noise injection. The experimental results show that the word error rate is reduced by 8.5% and 0.6% absolute from a single channel end-to-end and the best baseline (LF-MMI TDNN) on the CHiME-5 corpus, respectively.
EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
In this work, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users (e.g., tasks, compression ratios), resulting in greater flexibility in adjusting overall capacity without being constrained by specific compression formats. However, naively applying SVD to derive residual paths causes suboptimal utilization of the low-rank representation capacity. Instead, we propose Training-free Eigenspace Low-Rank Approximation (EoRA), a method that directly minimizes compression-induced errors without requiring gradient-based training, achieving fast optimization in minutes using a small amount of calibration data. EoRA projects compression errors into the eigenspace of input activations, leveraging eigenvalues to effectively prioritize the reconstruction of high-importance error components. Moreover, EoRA can be seamlessly integrated with fine-tuning and quantization to further improve effectiveness and efficiency. EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks, such as language generation, commonsense reasoning, and math reasoning tasks (e.g., 31.31%/12.88% and 9.69% improvements on ARC-Easy/ARC-Challenge and MathQA when compensating LLaMA3-8B that is quantized to 4-bit and pruned to 2:4 sparsity). EoRA offers a scalable, training-free solution to compensate for compression errors, making it a powerful tool to deploy LLMs in various capacity and efficiency requirements.
Hierarchical multi-class segmentation of glioma images using networks with multi-level activation function
For many segmentation tasks, especially for the biomedical image, the topological prior is vital information which is useful to exploit. The containment/nesting is a typical inter-class geometric relationship. In the MICCAI Brain tumor segmentation challenge, with its three hierarchically nested classes 'whole tumor', 'tumor core', 'active tumor', the nested classes relationship is introduced into the 3D-residual-Unet architecture. The network comprises a context aggregation pathway and a localization pathway, which encodes increasingly abstract representation of the input as going deeper into the network, and then recombines these representations with shallower features to precisely localize the interest domain via a localization path. The nested-class-prior is combined by proposing the multi-class activation function and its corresponding loss function. The model is trained on the training dataset of Brats2018, and 20% of the dataset is regarded as the validation dataset to determine parameters. When the parameters are fixed, we retrain the model on the whole training dataset. The performance achieved on the validation leaderboard is 86%, 77% and 72% Dice scores for the whole tumor, enhancing tumor and tumor core classes without relying on ensembles or complicated post-processing steps. Based on the same start-of-the-art network architecture, the accuracy of nested-class (enhancing tumor) is reasonably improved from 69% to 72% compared with the traditional Softmax-based method which blind to topological prior.
Averaging Weights Leads to Wider Optima and Better Generalization
Deep neural networks are typically trained by optimizing a loss function with an SGD variant, in conjunction with a decaying learning rate, until convergence. We show that simple averaging of multiple points along the trajectory of SGD, with a cyclical or constant learning rate, leads to better generalization than conventional training. We also show that this Stochastic Weight Averaging (SWA) procedure finds much flatter solutions than SGD, and approximates the recent Fast Geometric Ensembling (FGE) approach with a single model. Using SWA we achieve notable improvement in test accuracy over conventional SGD training on a range of state-of-the-art residual networks, PyramidNets, DenseNets, and Shake-Shake networks on CIFAR-10, CIFAR-100, and ImageNet. In short, SWA is extremely easy to implement, improves generalization, and has almost no computational overhead.
Training-Free Unsupervised Prompt for Vision-Language Models
Prompt learning has become the most effective paradigm for adapting large pre-trained vision-language models (VLMs) to downstream tasks. Recently, unsupervised prompt tuning methods, such as UPL and POUF, directly leverage pseudo-labels as supervisory information to fine-tune additional adaptation modules on unlabeled data. However, inaccurate pseudo labels easily misguide the tuning process and result in poor representation capabilities. In light of this, we propose Training-Free Unsupervised Prompts (TFUP), which maximally preserves the inherent representation capabilities and enhances them with a residual connection to similarity-based prediction probabilities in a training-free and labeling-free manner. Specifically, we integrate both instance confidence and prototype scores to select representative samples, which are used to customize a reliable Feature Cache Model (FCM) for training-free inference. Then, we design a Multi-level Similarity Measure (MSM) that considers both feature-level and semantic-level similarities to calculate the distance between each test image and the cached sample as the weight of the corresponding cached label to generate similarity-based prediction probabilities. In this way, TFUP achieves surprising performance, even surpassing the training-base method on multiple classification datasets. Based on our TFUP, we propose a training-based approach (TFUP-T) to further boost the adaptation performance. In addition to the standard cross-entropy loss, TFUP-T adopts an additional marginal distribution entropy loss to constrain the model from a global perspective. Our TFUP-T achieves new state-of-the-art classification performance compared to unsupervised and few-shot adaptation approaches on multiple benchmarks. In particular, TFUP-T improves the classification accuracy of POUF by 3.3% on the most challenging Domain-Net dataset.
HSIDMamba: Exploring Bidirectional State-Space Models for Hyperspectral Denoising
Effectively discerning spatial-spectral dependencies in HSI denoising is crucial, but prevailing methods using convolution or transformers still face computational efficiency limitations. Recently, the emerging Selective State Space Model(Mamba) has risen with its nearly linear computational complexity in processing natural language sequences, which inspired us to explore its potential in handling long spectral sequences. In this paper, we propose HSIDMamba(HSDM), tailored to exploit the linear complexity for effectively capturing spatial-spectral dependencies in HSI denoising. In particular, HSDM comprises multiple Hyperspectral Continuous Scan Blocks, incorporating BCSM(Bidirectional Continuous Scanning Mechanism), scale residual, and spectral attention mechanisms to enhance the capture of long-range and local spatial-spectral information. BCSM strengthens spatial-spectral interactions by linking forward and backward scans and enhancing information from eight directions through SSM, significantly enhancing the perceptual capability of HSDM and improving denoising performance more effectively. Extensive evaluations against HSI denoising benchmarks validate the superior performance of HSDM, achieving state-of-the-art results in performance and surpassing the efficiency of the latest transformer architectures by 30%.
MoDeST: Bridging the Gap between Federated and Decentralized Learning with Decentralized Sampling
Federated and decentralized machine learning leverage end-user devices for privacy-preserving training of models at lower operating costs than within a data center. In a round of Federated Learning (FL), a random sample of participants trains locally, then a central server aggregates the local models to produce a single model for the next round. In a round of Decentralized Learning (DL), all participants train locally and then aggregate with their immediate neighbors, resulting in many local models with residual variance between them. On the one hand, FL's sampling and lower model variance provides lower communication costs and faster convergence. On the other hand, DL removes the need for a central server and distributes the communication costs more evenly amongst nodes, albeit at a larger total communication cost and slower convergence. In this paper, we present MoDeST: Mostly-Consistent Decentralized Sampling Training. MoDeST implements decentralized sampling in which a random subset of nodes is responsible for training and aggregation every round: this provides the benefits of both FL and DL without their traditional drawbacks. Our evaluation of MoDeST on four common learning tasks: (i) confirms convergence as fast as FL, (ii) shows a 3x-14x reduction in communication costs compared to DL, and (iii) demonstrates that MoDeST quickly adapts to nodes joining, leaving, or failing, even when 80% of all nodes become unresponsive.
ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction
Neural information retrieval (IR) has greatly advanced search and other knowledge-intensive language tasks. While many neural IR methods encode queries and documents into single-vector representations, late interaction models produce multi-vector representations at the granularity of each token and decompose relevance modeling into scalable token-level computations. This decomposition has been shown to make late interaction more effective, but it inflates the space footprint of these models by an order of magnitude. In this work, we introduce ColBERTv2, a retriever that couples an aggressive residual compression mechanism with a denoised supervision strategy to simultaneously improve the quality and space footprint of late interaction. We evaluate ColBERTv2 across a wide range of benchmarks, establishing state-of-the-art quality within and outside the training domain while reducing the space footprint of late interaction models by 6--10times.
ASAP: Aligning Simulation and Real-World Physics for Learning Agile Humanoid Whole-Body Skills
Humanoid robots hold the potential for unparalleled versatility in performing human-like, whole-body skills. However, achieving agile and coordinated whole-body motions remains a significant challenge due to the dynamics mismatch between simulation and the real world. Existing approaches, such as system identification (SysID) and domain randomization (DR) methods, often rely on labor-intensive parameter tuning or result in overly conservative policies that sacrifice agility. In this paper, we present ASAP (Aligning Simulation and Real-World Physics), a two-stage framework designed to tackle the dynamics mismatch and enable agile humanoid whole-body skills. In the first stage, we pre-train motion tracking policies in simulation using retargeted human motion data. In the second stage, we deploy the policies in the real world and collect real-world data to train a delta (residual) action model that compensates for the dynamics mismatch. Then, ASAP fine-tunes pre-trained policies with the delta action model integrated into the simulator to align effectively with real-world dynamics. We evaluate ASAP across three transfer scenarios: IsaacGym to IsaacSim, IsaacGym to Genesis, and IsaacGym to the real-world Unitree G1 humanoid robot. Our approach significantly improves agility and whole-body coordination across various dynamic motions, reducing tracking error compared to SysID, DR, and delta dynamics learning baselines. ASAP enables highly agile motions that were previously difficult to achieve, demonstrating the potential of delta action learning in bridging simulation and real-world dynamics. These results suggest a promising sim-to-real direction for developing more expressive and agile humanoids.
Large Language Models aren't all that you need
This paper describes the architecture and systems built towards solving the SemEval 2023 Task 2: MultiCoNER II (Multilingual Complex Named Entity Recognition) [1]. We evaluate two approaches (a) a traditional Conditional Random Fields model and (b) a Large Language Model (LLM) fine-tuned with a customized head and compare the two approaches. The novel ideas explored are: 1) Decaying auxiliary loss (with residual) - where we train the model on an auxiliary task of Coarse-Grained NER and include this task as a part of the loss function 2) Triplet token blending - where we explore ways of blending the embeddings of neighboring tokens in the final NER layer prior to prediction 3) Task-optimal heads - where we explore a variety of custom heads and learning rates for the final layer of the LLM. We also explore multiple LLMs including GPT-3 and experiment with a variety of dropout and other hyperparameter settings before arriving at our final model which achieves micro & macro f1 of 0.85/0.84 (on dev) and 0.67/0.61 on the test data . We show that while pre-trained LLMs, by themselves, bring about a large improvement in scores as compared to traditional models, we also demonstrate that tangible improvements to the Macro-F1 score can be made by augmenting the LLM with additional feature/loss/model engineering techniques described above.
SENetV2: Aggregated dense layer for channelwise and global representations
Convolutional Neural Networks (CNNs) have revolutionized image classification by extracting spatial features and enabling state-of-the-art accuracy in vision-based tasks. The squeeze and excitation network proposed module gathers channelwise representations of the input. Multilayer perceptrons (MLP) learn global representation from the data and in most image classification models used to learn extracted features of the image. In this paper, we introduce a novel aggregated multilayer perceptron, a multi-branch dense layer, within the Squeeze excitation residual module designed to surpass the performance of existing architectures. Our approach leverages a combination of squeeze excitation network module with dense layers. This fusion enhances the network's ability to capture channel-wise patterns and have global knowledge, leading to a better feature representation. This proposed model has a negligible increase in parameters when compared to SENet. We conduct extensive experiments on benchmark datasets to validate the model and compare them with established architectures. Experimental results demonstrate a remarkable increase in the classification accuracy of the proposed model.
Single Image Reflection Separation via Component Synergy
The reflection superposition phenomenon is complex and widely distributed in the real world, which derives various simplified linear and nonlinear formulations of the problem. In this paper, based on the investigation of the weaknesses of existing models, we propose a more general form of the superposition model by introducing a learnable residue term, which can effectively capture residual information during decomposition, guiding the separated layers to be complete. In order to fully capitalize on its advantages, we further design the network structure elaborately, including a novel dual-stream interaction mechanism and a powerful decomposition network with a semantic pyramid encoder. Extensive experiments and ablation studies are conducted to verify our superiority over state-of-the-art approaches on multiple real-world benchmark datasets. Our code is publicly available at https://github.com/mingcv/DSRNet.
NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot Speech and Singing Synthesizers
Scaling text-to-speech (TTS) to large-scale, multi-speaker, and in-the-wild datasets is important to capture the diversity in human speech such as speaker identities, prosodies, and styles (e.g., singing). Current large TTS systems usually quantize speech into discrete tokens and use language models to generate these tokens one by one, which suffer from unstable prosody, word skipping/repeating issue, and poor voice quality. In this paper, we develop NaturalSpeech 2, a TTS system that leverages a neural audio codec with residual vector quantizers to get the quantized latent vectors and uses a diffusion model to generate these latent vectors conditioned on text input. To enhance the zero-shot capability that is important to achieve diverse speech synthesis, we design a speech prompting mechanism to facilitate in-context learning in the diffusion model and the duration/pitch predictor. We scale NaturalSpeech 2 to large-scale datasets with 44K hours of speech and singing data and evaluate its voice quality on unseen speakers. NaturalSpeech 2 outperforms previous TTS systems by a large margin in terms of prosody/timbre similarity, robustness, and voice quality in a zero-shot setting, and performs novel zero-shot singing synthesis with only a speech prompt. Audio samples are available at https://speechresearch.github.io/naturalspeech2.
Global Context Vision Transformers
We propose global context vision transformer (GC ViT), a novel architecture that enhances parameter and compute utilization for computer vision tasks. The core of the novel model are global context self-attention modules, joint with standard local self-attention, to effectively yet efficiently model both long and short-range spatial interactions, as an alternative to complex operations such as an attention masks or local windows shifting. While the local self-attention modules are responsible for modeling short-range information, the global query tokens are shared across all global self-attention modules to interact with local key and values. In addition, we address the lack of inductive bias in ViTs and improve the modeling of inter-channel dependencies by proposing a novel downsampler which leverages a parameter-efficient fused inverted residual block. The proposed GC ViT achieves new state-of-the-art performance across image classification, object detection and semantic segmentation tasks. On ImageNet-1K dataset for classification, GC ViT models with 51M, 90M and 201M parameters achieve 84.3%, 84.9% and 85.6% Top-1 accuracy, respectively, surpassing comparably-sized prior art such as CNN-based ConvNeXt and ViT-based Swin Transformer. Pre-trained GC ViT backbones in downstream tasks of object detection, instance segmentation, and semantic segmentation on MS COCO and ADE20K datasets outperform prior work consistently, sometimes by large margins.
Multi-Grid Back-Projection Networks
Multi-Grid Back-Projection (MGBP) is a fully-convolutional network architecture that can learn to restore images and videos with upscaling artifacts. Using the same strategy of multi-grid partial differential equation (PDE) solvers this multiscale architecture scales computational complexity efficiently with increasing output resolutions. The basic processing block is inspired in the iterative back-projection (IBP) algorithm and constitutes a type of cross-scale residual block with feedback from low resolution references. The architecture performs in par with state-of-the-arts alternatives for regression targets that aim to recover an exact copy of a high resolution image or video from which only a downscale image is known. A perceptual quality target aims to create more realistic outputs by introducing artificial changes that can be different from a high resolution original content as long as they are consistent with the low resolution input. For this target we propose a strategy using noise inputs in different resolution scales to control the amount of artificial details generated in the output. The noise input controls the amount of innovation that the network uses to create artificial realistic details. The effectiveness of this strategy is shown in benchmarks and it is explained as a particular strategy to traverse the perception-distortion plane.
Reformer: The Efficient Transformer
Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its complexity from O(L^2) to O(Llog L), where L is the length of the sequence. Furthermore, we use reversible residual layers instead of the standard residuals, which allows storing activations only once in the training process instead of N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models while being much more memory-efficient and much faster on long sequences.
Res2Net: A New Multi-scale Backbone Architecture
Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/.
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
Click-through rate (CTR) prediction, which aims to predict the probability of a user clicking on an ad or an item, is critical to many online applications such as online advertising and recommender systems. The problem is very challenging since (1) the input features (e.g., the user id, user age, item id, item category) are usually sparse and high-dimensional, and (2) an effective prediction relies on high-order combinatorial features (a.k.a. cross features), which are very time-consuming to hand-craft by domain experts and are impossible to be enumerated. Therefore, there have been efforts in finding low-dimensional representations of the sparse and high-dimensional raw features and their meaningful combinations. In this paper, we propose an effective and efficient method called the AutoInt to automatically learn the high-order feature interactions of input features. Our proposed algorithm is very general, which can be applied to both numerical and categorical input features. Specifically, we map both the numerical and categorical features into the same low-dimensional space. Afterwards, a multi-head self-attentive neural network with residual connections is proposed to explicitly model the feature interactions in the low-dimensional space. With different layers of the multi-head self-attentive neural networks, different orders of feature combinations of input features can be modeled. The whole model can be efficiently fit on large-scale raw data in an end-to-end fashion. Experimental results on four real-world datasets show that our proposed approach not only outperforms existing state-of-the-art approaches for prediction but also offers good explainability. Code is available at: https://github.com/DeepGraphLearning/RecommenderSystems.
Self-Supervised Model Adaptation for Multimodal Semantic Segmentation
Learning to reliably perceive and understand the scene is an integral enabler for robots to operate in the real-world. This problem is inherently challenging due to the multitude of object types as well as appearance changes caused by varying illumination and weather conditions. Leveraging complementary modalities can enable learning of semantically richer representations that are resilient to such perturbations. Despite the tremendous progress in recent years, most multimodal convolutional neural network approaches directly concatenate feature maps from individual modality streams rendering the model incapable of focusing only on relevant complementary information for fusion. To address this limitation, we propose a mutimodal semantic segmentation framework that dynamically adapts the fusion of modality-specific features while being sensitive to the object category, spatial location and scene context in a self-supervised manner. Specifically, we propose an architecture consisting of two modality-specific encoder streams that fuse intermediate encoder representations into a single decoder using our proposed self-supervised model adaptation fusion mechanism which optimally combines complementary features. As intermediate representations are not aligned across modalities, we introduce an attention scheme for better correlation. In addition, we propose a computationally efficient unimodal segmentation architecture termed AdapNet++ that incorporates a new encoder with multiscale residual units and an efficient atrous spatial pyramid pooling that has a larger effective receptive field with more than 10x fewer parameters, complemented with a strong decoder with a multi-resolution supervision scheme that recovers high-resolution details. Comprehensive empirical evaluations on several benchmarks demonstrate that both our unimodal and multimodal architectures achieve state-of-the-art performance.