- Holographic quantum criticality from multi-trace deformations We explore the consequences of multi-trace deformations in applications of gauge-gravity duality to condensed matter physics. We find that they introduce a powerful new "knob" that can implement spontaneous symmetry breaking, and can be used to construct a new type of holographic superconductor. This knob can be tuned to drive the critical temperature to zero, leading to a new quantum critical point. We calculate nontrivial critical exponents, and show that fluctuations of the order parameter are `locally' quantum critical in the disordered phase. Most notably the dynamical critical exponent is determined by the dimension of an operator at the critical point. We argue that the results are robust against quantum corrections and discuss various generalizations. 3 authors · Aug 9, 2010
- BPS and near-BPS black holes in $AdS_5$ and their spectrum in $\mathcal{N}=4$ SYM We study quantum corrections in the gravitational path integral around nearly 1/16-BPS black holes in asymptotically AdS_5 times S^5 space, dual to heavy states in 4D N=4 super Yang-Mills. The analysis provides a gravitational explanation of why 1/16-BPS black holes exhibit an exact degeneracy at large N and why all such states have the same charges, confirming the belief that the superconformal index precisely counts the entropy of extremal black holes. We show the presence of a gap of order N^{-2} between the 1/16-BPS black holes and the lightest near-BPS black holes within the same charge sector. This is the first example of such a gap for black holes states within the context of AdS_5 holography. We also derive the spectrum of near-BPS states that lie above this gap. Our computation relies on finding the correct version of the N=2 super-Schwarzian theory which captures the breaking of the SU(1, 1|1) symmetry when the black hole has finite temperature and non-zero chemical potential. Finally, we comment on possible stringy and non-perturbative corrections that can affect the black hole spectrum. 4 authors · Mar 2, 2022
- Quantum error correction with an Ising machine under circuit-level noise Efficient decoding to estimate error locations from outcomes of syndrome measurement is the prerequisite for quantum error correction. Decoding in presence of circuit-level noise including measurement errors should be considered in case of actual quantum computing devices. In this work, we develop a decoder for circuit-level noise that solves the error estimation problems as Ising-type optimization problems. We confirm that the threshold theorem in the surface code under the circuitlevel noise is reproduced with an error threshold of approximately 0.4%. We also demonstrate the advantage of the decoder through which the Y error detection rate can be improved compared with other matching-based decoders. Our results reveal that a lower logical error rate can be obtained using our algorithm compared with that of the minimum-weight perfect matching algorithm. 7 authors · Aug 1, 2023
- Real-time quantum error correction beyond break-even The ambition of harnessing the quantum for computation is at odds with the fundamental phenomenon of decoherence. The purpose of quantum error correction (QEC) is to counteract the natural tendency of a complex system to decohere. This cooperative process, which requires participation of multiple quantum and classical components, creates a special type of dissipation that removes the entropy caused by the errors faster than the rate at which these errors corrupt the stored quantum information. Previous experimental attempts to engineer such a process faced an excessive generation of errors that overwhelmed the error-correcting capability of the process itself. Whether it is practically possible to utilize QEC for extending quantum coherence thus remains an open question. We answer it by demonstrating a fully stabilized and error-corrected logical qubit whose quantum coherence is significantly longer than that of all the imperfect quantum components involved in the QEC process, beating the best of them with a coherence gain of G = 2.27 pm 0.07. We achieve this performance by combining innovations in several domains including the fabrication of superconducting quantum circuits and model-free reinforcement learning. 13 authors · Nov 16, 2022
- Fusion-based quantum computation We introduce fusion-based quantum computing (FBQC) - a model of universal quantum computation in which entangling measurements, called fusions, are performed on the qubits of small constant-sized entangled resource states. We introduce a stabilizer formalism for analyzing fault tolerance and computation in these schemes. This framework naturally captures the error structure that arises in certain physical systems for quantum computing, such as photonics. FBQC can offer significant architectural simplifications, enabling hardware made up of many identical modules, requiring an extremely low depth of operations on each physical qubit and reducing classical processing requirements. We present two pedagogical examples of fault-tolerant schemes constructed in this framework and numerically evaluate their threshold under a hardware agnostic fusion error model including both erasure and Pauli error. We also study an error model of linear optical quantum computing with probabilistic fusion and photon loss. In FBQC the non-determinism of fusion is directly dealt with by the quantum error correction protocol, along with other errors. We find that tailoring the fault-tolerance framework to the physical system allows the scheme to have a higher threshold than schemes reported in literature. We present a ballistic scheme which can tolerate a 10.4% probability of suffering photon loss in each fusion. 13 authors · Jan 22, 2021
- Fault-tolerant Preparation of Stabilizer States for Quantum CSS Codes by Classical Error-Correcting Codes Stabilizer states are extensively studied in quantum information theory for their structures based on the Pauli group. Calderbank-Shor-Steane (CSS) stabilizer states are of particular importance in their application to fault-tolerant quantum computation (FTQC). However, how to fault-tolerantly prepare arbitrary CSS stabilizer states for general CSS stabilizer codes is still unknown, and their preparation can be highly costly in computational resources. In this paper, we show how to prepare a large class of CSS stabilizer states useful for FTQC. We propose distillation protocols using syndrome encoding by classical codes or quantum CSS codes. Along the same lines, we show that classical coding techniques can reduce the ancilla consumption in Steane syndrome extraction by using additional transversal controlled-NOT gates and classical computing power. In the scenario of a fixed ancilla consumption rate, we can increase the frequency of quantum error correction and effectively lower the error rate. 3 authors · May 18, 2016
- Fault-tolerant simulation of Lattice Gauge Theories with gauge covariant codes We show in this paper that a strong and easy connection exists between quantum error correction and Lattice Gauge Theories (LGT) by using the Gauge symmetry to construct an efficient error-correcting code for Abelian LGTs. We identify the logical operations on this gauge covariant code and show that the corresponding Hamiltonian can be expressed in terms of these logical operations while preserving the locality of the interactions. Furthermore, we demonstrate that these substitutions actually give a new way of writing the LGT as an equivalent hardcore boson model. Finally we demonstrate a method to perform fault-tolerant time evolution of the Hamiltonian within the gauge covariant code using both product formulas and qubitization approaches. This opens up the possibility of inexpensive end to end dynamical simulations that save physical qubits by blurring the lines between simulation algorithms and quantum error correcting codes. 3 authors · May 29, 2024
- Combined Dissipative and Hamiltonian Confinement of Cat Qubits Quantum error correction with biased-noise qubits can drastically reduce the hardware overhead for universal and fault-tolerant quantum computation. Cat qubits are a promising realization of biased-noise qubits as they feature an exponential error bias inherited from their non-local encoding in the phase space of a quantum harmonic oscillator. To confine the state of an oscillator to the cat qubit manifold, two main approaches have been considered so far: a Kerr-based Hamiltonian confinement with high gate performances, and a dissipative confinement with robust protection against a broad range of noise mechanisms. We introduce a new combined dissipative and Hamiltonian confinement scheme based on two-photon dissipation together with a Two-Photon Exchange (TPE) Hamiltonian. The TPE Hamiltonian is similar to Kerr nonlinearity, but unlike the Kerr it only induces a bounded distinction between even- and odd-photon eigenstates, a highly beneficial feature for protecting the cat qubits with dissipative mechanisms. Using this combined confinement scheme, we demonstrate fast and bias-preserving gates with drastically improved performance compared to dissipative or Hamiltonian schemes. In addition, this combined scheme can be implemented experimentally with only minor modifications of existing dissipative cat qubit experiments. 3 authors · Dec 10, 2021
- Subsystem codes with high thresholds by gauge fixing and reduced qubit overhead We introduce a technique that uses gauge fixing to significantly improve the quantum error correcting performance of subsystem codes. By changing the order in which check operators are measured, valuable additional information can be gained, and we introduce a new method for decoding which uses this information to improve performance. Applied to the subsystem toric code with three-qubit check operators, we increase the threshold under circuit-level depolarising noise from 0.67% to 0.81%. The threshold increases further under a circuit-level noise model with small finite bias, up to 2.22% for infinite bias. Furthermore, we construct families of finite-rate subsystem LDPC codes with three-qubit check operators and optimal-depth parity-check measurement schedules. To the best of our knowledge, these finite-rate subsystem codes outperform all known codes at circuit-level depolarising error rates as high as 0.2%, where they have a qubit overhead that is 4.3times lower than the most efficient version of the surface code and 5.1times lower than the subsystem toric code. Their threshold and pseudo-threshold exceeds 0.42% for circuit-level depolarising noise, increasing to 2.4% under infinite bias using gauge fixing. 2 authors · Oct 19, 2020
- Error Correction of Quantum Algorithms: Arbitrarily Accurate Recovery Of Noisy Quantum Signal Processing The intrinsic probabilistic nature of quantum systems makes error correction or mitigation indispensable for quantum computation. While current error-correcting strategies focus on correcting errors in quantum states or quantum gates, these fine-grained error-correction methods can incur significant overhead for quantum algorithms of increasing complexity. We present a first step in achieving error correction at the level of quantum algorithms by combining a unified perspective on modern quantum algorithms via quantum signal processing (QSP). An error model of under- or over-rotation of the signal processing operator parameterized by epsilon < 1 is introduced. It is shown that while Pauli Z-errors are not recoverable without additional resources, Pauli X and Y errors can be arbitrarily suppressed by coherently appending a noisy `recovery QSP.' Furthermore, it is found that a recovery QSP of length O(2^k c^{k^2} d) is sufficient to correct any length-d QSP with c unique phases to k^{th}-order in error epsilon. Allowing an additional assumption, a lower bound of Omega(cd) is shown, which is tight for k = 1, on the length of the recovery sequence. Our algorithmic-level error correction method is applied to Grover's fixed-point search algorithm as a demonstration. 4 authors · Jan 20, 2023